

$$I(J^P) = \frac{1}{2}(0^-)$$

D^{\pm} MASS

The fit includes D^{\pm} , D^{0} , D_{s}^{\pm} , $D^{*\pm}$, D^{*0} , $D_{s}^{*\pm}$, $D_{1}(2420)^{0}$, $D_{2}^{*}(2460)^{0}$, and $D_{s1}(2536)^{\pm}$ mass and mass difference measurements.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1869.66	5± 0.05 OUR FIT					
1869.5	\pm 0.4 OUR AVER	RAGE				
1869.53	$8 \pm 0.49 \pm 0.20$ 110	\pm 15	ANASHIN	10A	KEDR	e^+e^- at $\psi($ 3770 $)$
1870.0	\pm 0.5 ± 1.0	317	BARLAG	90 C	ACCM	π^- Cu 230 GeV
1869.4	\pm 0.6		¹ TRILLING	81	RVUE	e^+e^- 3.77 GeV
• • • \	We do not use the fo	ollowing c	lata for averages,	fits, l	imits, et	c. ● ● ●
1875	± 10	9	ADAMOVICH	87	EMUL	Photoproduction
1860	± 16	6	ADAMOVICH	84	EMUL	Photoproduction
1863	\pm 4		DERRICK	84	HRS	e ⁺ e ⁻ 29 GeV
1868.4	\pm 0.5		¹ SCHINDLER	81	MRK2	e^+e^- 3.77 GeV
1874	\pm 5		GOLDHABER	77	MRK1	D^0 , D^+ recoil spectra
1868.3	\pm 0.9		¹ PERUZZI	77	LGW	e^+e^- 3.77 GeV
1874	± 11		PICCOLO	77	MRK1	e^+e^- 4.03, 4.41 GeV
1876	± 15	50	PERUZZI	76	MRK1	$K^{\mp}\pi^{\pm}\pi^{\pm}$
1_{PFI}	RUZZI 77 and SCH	INDI FR	81 errors do not	inclu	de the O	13% uncertainty in the

PERUZZI 77 and SCHINDLER 81 errors do not include the 0.13% uncertainty in the absolute SPEAR energy calibration. TRILLING 81 uses the high precision $J/\psi(1S)$ and $\psi(2S)$ measurements of ZHOLENTZ 80 to determine this uncertainty and combines the PERUZZI 77 and SCHINDLER 81 results to obtain the value quoted.

D^{\pm} MEAN LIFE

Measurements with an error $>100\times10^{-15}$ s have been omitted from the Listings.

VALUE	(10^{-15})	s)	EVTS	DOCUMENT ID		TECN	COMMENT
1033	± 5	OUR AVE	RAGE				
1030.4	1± 4.7	$7\pm~3.1$	171k	¹ ABUDINEN	21A	BEL2	e^+e^- at $arphi(4S)$
1039.4	1± 4.3	$3\pm$ 7.0	110k	LINK	02F	FOCS	γ nucleus, $pprox$ 180 GeV
• • •	We do	o not use the	following	data for averages	, fits,	limits, e	tc. ● ● ●
1033.6	5 ± 22.1	$^{+}_{-12.7}^{+9.9}$	3.7k	BONVICINI	99	CLEO	$e^+e^-pprox \Upsilon(4S)$
1048	± 15	± 11	9k	FRABETTI	94 D	E687	$D^+ \rightarrow K^- \pi^+ \pi^+$
1075	± 40	± 18	2.4k	FRABETTI	91	E687	γ Be, $D^+ ightarrow$
							$K^-\pi^+\pi^+$
1030	± 80	± 60	200	ALVAREZ	90	NA14	$\gamma, D^+ \rightarrow K^- \pi^+ \pi^+$
1050	$^{+77}_{-72}$		317	² BARLAG	90 C	ACCM	π^- Cu 230 GeV
1050	± 80	±70	363	ALBRECHT	881	ARG	e^+e^- 10 GeV
1090	± 30	± 25	2.9k	RAAB	88	E691	Photoproduction
¹ AI ² B/	BUDIN ARLAG	EN 21A dete 5 90C estima	ermines the tes the syst	lifetime ratio $ au(t)$	D ⁺)/ be neg	$\tau(D^0) =$ (ligible.	= $2.510 \pm 0.013 \pm 0.007$

D⁺ DECAY MODES

Most decay modes (other than the semileptonic modes) that involve a neutral K meson are now given as K_S^0 modes, not as \overline{K}^0 modes. Nearly always it is a K_S^0 that is measured, and interference between Cabibbo-allowed and doubly Cabibbo-suppressed modes can invalidate the assumption that $2\Gamma(K_S^0) = \Gamma(\overline{K}^0)$.

	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level						
		Inclusive modes							
Γ_1	<i>e</i> ⁺ semileptonic	(16.07 \pm 0.30) %							
Γ2	μ^+ anything	(17.6 \pm 3.2) %							
Γ ₃	K^- anything	(25.7 \pm 1.4) %							
Γ ₄	K_S^0 anything	(33.1 \pm 0.4) %							
Γ ₅	K^+ anything	$(5.9 \pm 0.8)\%$							
Г ₆	$K^*(892)^-$ anything	$(6 \pm 5)\%$							
Γ ₇	$\overline{K}^*(892)^0$ anything	$(23 \pm 5)\%$							
Г ₈	K*(892) ⁰ anything	< 6.6 %	CL=90%						
Γ9	η anything	(6.3 \pm 0.7) %							
Γ ₁₀	η^\prime anything	(1.04 \pm 0.18) %							
Γ_{11}	ϕ anything	(1.12 \pm 0.04) %							
Γ_{12}	$\pi^+\pi^+\pi^-$ anything	(15.25 \pm 0.20) %							
	Leptonic and semileptonic modes								

Γ ₁₃	$e^+ \nu_e$	< 8.8	imes 10 ⁻⁶	CL=90%
Γ_{14}	$\gamma e^+ \nu_e$	< 3.0	imes 10 ⁻⁵	CL=90%
Γ_{15}	$\mu^+ u_{\mu}$	($3.74~\pm~0.17$	$) \times 10^{-4}$	
Γ ₁₆	$\tau^+ \nu_{\tau}$	($1.20~\pm~0.27$	$) imes 10^{-3}$	
Γ_{17}	$\overline{K}^0 e^+ \nu_e$	(8.72 ± 0.09) %	
Γ ₁₈	$\overline{K}^0 \mu^+ u_\mu$	($8.76~\pm~0.19$) %	
Γ ₁₉	$K^- \pi^+ e^+ \nu_e$	(4.02 ± 0.18) %	S=3.2
Γ ₂₀	$\overline{K}^{*}(892)^{0}e^{+} u_{e}$, $\overline{K}^{*}(892)^{0} ightarrow$	($3.77~\pm~0.17$) %	
_	$K^{-}\pi^{+}$			
I ₂₁	$(K^-\pi^+)$ [0.8–1.0]GeV $e^+ \nu_e$	(3.39 ± 0.09)) %	
Γ ₂₂	$(K^-\pi^+)_{S-wave} e^+ u_e$	($2.28~\pm~0.11$	$) \times 10^{-3}$	
Г ₂₃	$\overline{K}^{*}(1410)^{0}e^{+} u_{e}$,	< 6	imes 10 ⁻³	CL=90%
	$\overline{K}{}^{*}(1410)^{0} ightarrow \ K^{-}\pi^{+}$			
Γ ₂₄	$\overline{K}_{2}^{*}(1430)^{0}e^{+} u_{e}$,	< 5	imes 10 ⁻⁴	CL=90%
	$\overline{K}_2^*(1430)^0 ightarrow K^- \pi^+$			
Γ_{25}	$K^{-}\pi^{+}e^{+}\nu_{e}$ nonresonant	< 7	imes 10 ⁻³	CL=90%
Γ ₂₆	$\overline{K}^{*}(892)^{0} e^{+} \nu_{e}$	(5.40 \pm 0.10) %	S=1.1
Γ ₂₇	$K^-\pi^+\mu^+ u_\mu$	(3.65 ± 0.34) %	
	·			

$$\Gamma_{58} \qquad \frac{\overline{K}_{2}^{\pi}(1430)^{0}\pi^{+}}{\overline{K}_{2}^{*}(1430)^{0}} \rightarrow K^{-}\pi^{+}$$

[b] (2.3
$$\pm$$
 0.7) $\times\,10^{-4}$

Γ₅₄

Γ₅₅

Г₅₆

Г₅₇

Pionic modes

		Jues
Г ₉₈	$\pi^+\pi^0$	(1.247 \pm 0.033) $ imes$ 10 $^{-3}$
Г ₉₉	$2\pi^{+}\pi^{-}$	(3.27 \pm 0.09) $\times10^{-3}$
Γ_{100}	$ ho^{0} \pi^+$	(8.4 \pm 0.8) $ imes$ 10 $^{-4}$
Γ ₁₀₁	$\pi^+(\pi^+\pi^-)_{\mathcal{S}-wave}$	(2.01 \pm 0.06) $ imes$ 10 $^{-3}$
Γ ₁₀₂	$\sigma \pi^+$, $ \sigma ightarrow \pi^+ \pi^-$	(1.38 \pm 0.10) $ imes$ 10 $^{-3}$
Γ_{103}	$f_0(980)\pi^+$, $f_0 ightarrow \pi^+\pi^-$	(1.57 \pm 0.32) $ imes$ 10 $^{-4}$
Γ ₁₀₄	$f_0(1370)\pi^+$, $f_0 ightarrow\pi^+\pi^-$	(8 \pm 4) $ imes$ 10 $^{-5}$
Γ_{105}	$\omega \pi^+$, $\omega ightarrow \pi^+ \pi^-$	(3.4 \pm 0.5) $ imes$ 10 $^{-6}$
Γ ₁₀₆	$f_2(1270)\pi^+$, $f_2 \to \pi^+\pi^-$	(4.58 \pm 0.28) $ imes$ 10 $^{-4}$
Γ ₁₀₇	$ ho$ (1450) 0 π^{+} , $ ho^{0}$ $ ightarrow$ π^{+} π^{-}	(1.8 \pm 0.5) $ imes$ 10 $^{-4}$
Γ ₁₀₈	$ ho$ (1700) $^{0}\pi^{+}$, $ ho^{0} ightarrow\pi^{+}\pi^{-}$	(1.9 \pm 0.5) $ imes$ 10 $^{-4}$
Γ ₁₀₉	f_0(1500) π^+ , f_0 $ ightarrow \pi^+\pi^-$	(1.1 \pm 0.4) $ imes$ 10 $^{-4}$
Γ_{110}	$f_0(1710) \pi^+$, $f_0 o \pi^+ \pi^-$	$< 5 \times 10^{-5} \text{ CL}=95\%$
Γ ₁₁₁	$f_0(1790)\pi^+$, $f_0 ightarrow\pi^+\pi^-$	$< 7 \times 10^{-5} \text{ CL}=95\%$
Γ_{112}	$(\pi^+\pi^+)_{\mathcal{S}-wave}\pi^-$	$< 1.2 \times 10^{-4} \text{ CL}=95\%$
Γ_{113}	$2\pi^+\pi^-$ nonresonant	$< 1.1 \times 10^{-4} CL=95\%$
Γ_{114}	$\pi^{+}2\pi^{0}$	(4.61 \pm 0.15) $ imes$ 10 $^{-3}$
Γ_{115}	$2\pi^{+}\pi^{-}\pi^{0}$	(1.165 ± 0.030) %
Γ_{116}	$\pi^{+}3\pi^{0}$	(4.17 \pm 0.26) $ imes$ 10 $^{-3}$
Γ_{117}	$\pi^+4\pi^0$	(1.9 \pm 0.4) $ imes$ 10 $^{-3}$
Γ ₁₁₈	$2\pi^{+}\pi^{-}2\pi^{0}$	(1.07 \pm 0.05)%
Γ ₁₁₉	$3\pi^+2\pi^-$	$(1.66 \pm 0.16) \times 10^{-3}$ S=1.1
Γ ₁₂₀	$2\pi^{+}\pi^{-}3\pi^{0}$	(3.42 \pm 0.35) $ imes$ 10 $^{-3}$
Γ_{121}	$3\pi^+2\pi^-\pi^0$	(2.34 \pm 0.27) $ imes$ 10 $^{-3}$
Γ ₁₂₂	$\eta \pi^+$	(3.77 \pm 0.09) $\times10^{-3}$

Γ ₁₂₃	$\eta \pi^+ \pi^0$	(2.05 \pm 0.35) $ imes$ 10 $^{-3}$	S=2.2
Γ ₁₂₄	$\eta 2\pi^+\pi^-$	(3.41 \pm 0.20) $\times10^{-3}$	
Γ ₁₂₅	$\eta \pi^+ 2\pi^0$	(3.20 \pm 0.33) $ imes$ 10 $^{-3}$	
Γ ₁₂₆	$\eta \pi^+ 3 \pi^0$	(2.9 \pm 0.5) $ imes$ 10 $^{-3}$	
Γ ₁₂₇	$\eta 2\pi^+\pi^-\pi^0$	(3.88 \pm 0.34) $ imes$ 10 $^{-3}$	
Γ ₁₂₈	$\eta \eta \pi^+$	(2.96 \pm 0.26) $ imes$ 10 $^{-3}$	
Γ ₁₂₉	$\omega \pi^+$	(2.8 \pm 0.6) $ imes$ 10 ⁻⁴	
Γ ₁₃₀	$\omega \pi^+ \pi^0$	(3.9 \pm 0.9) $ imes$ 10 $^{-3}$	
Г ₁₃₁	$\eta^{\prime}(958)\pi^+$	(4.97 \pm 0.19) $ imes$ 10 $^{-3}$	
Г ₁₃₂	$\eta'(958) \pi^+ \pi^0$	(1.6 \pm 0.5) $ imes$ 10 $^{-3}$	

Hadronic modes with a $K\overline{K}$ pair

	Hadronic modes with a A A pair								
Γ ₁₃₃	$K^0_S K^+$		(3.04 \pm 0.09) $\times10^{-3}$ S=2	2.2					
Γ ₁₃₄	$\kappa_I^{\bar{0}}\kappa^+$		(3.21 \pm 0.16) $\times10^{-3}$						
Γ ₁₃₅	$K_{S}^{\overline{0}}K^{+}\pi^{0}$		(5.07 \pm 0.30) $\times10^{-3}$						
Γ ₁₃₆	$K^*(892)^+K^0_S$, $K^{*+} ightarrow$		(2.89 \pm 0.30) $\times10^{-3}$						
	$K^+ \pi^0$								
Γ ₁₃₇	$\overline{K}^{*}(892)^{0} \overline{K}^{+}, \ \overline{K}^{*0} \rightarrow K^{0}_{S} \pi^{0}$		(5.2 \pm 1.4) $ imes$ 10 ⁻⁴						
Γ ₁₃₈	$K^{*}(892)^{+}K^{0}_{S}$								
Γ ₁₃₉	$\kappa^0_L \kappa^+ \pi^0$		(5.24 \pm 0.31) $ imes$ 10 $^{-3}$						
Γ ₁₄₀	$K^+ K^- \pi^+$	[a]	(9.68 \pm 0.18) $\times10^{-3}$						
Γ ₁₄₁	$K^+ \overline{K}^* (892)^0$, $\overline{K}^* (892)^0$, $K^- \pi^+$		(2.49 $\stackrel{+}{_{-}} \stackrel{0.08}{_{-}}$) $\times 10^{-3}$						
Γ ₁₄₂	$ \begin{array}{cccc} \mathcal{K} & (692) & \rightarrow & \mathcal{K} & \pi^{-1} \\ \mathcal{K}^{+} & \overline{\mathcal{K}}_{0}^{*} (1430)^{0} , & \overline{\mathcal{K}}_{0}^{*} (1430)^{0} \\ \end{array} \rightarrow $		($1.82~\pm~0.35$) $\times10^{-3}$						
Г ₁₄₃	$egin{array}{ccc} \kappa & \pi^+ \ \overline{K}_2^*(1430)^0, & \overline{K}_2^* ightarrow \ \kappa^- \pi^+ \end{array}$		$(1.6 \ + \ 1.2 \ - \ 0.8 \) imes 10^{-4}$						
Γ ₁₄₄	$K^+ \overline{K}^*_0$ (700), $\overline{K}^*_0 o K^- \pi^+$		$(\begin{array}{ccc} 6.8 & + & 3.5 \\ - & 2.1 \end{array}) imes 10^{-4}$						
Г ₁₄₅	$a_0(1450)^0 \pi^+$, $a_0^0 \to K^+ K^-$		$(\begin{array}{ccc} 4.5 & + & 7.0 \\ - & 1.8 \end{array}) imes 10^{-4}$						
Γ ₁₄₆	ϕ (1680) π^+ , $\phi \rightarrow K^+ K^-$		$(\begin{array}{ccc} 4.9 & + & 4.0 \\ & - & 1.9 \end{array}) imes 10^{-5}$						
Γ ₁₄₇	$\phi \pi^+$, $\phi ightarrow K^+ K^-$		(2.69 $\substack{+\\-}$ 0.08) $\times10^{-3}$						
Γ ₁₄₈	$\phi \pi^+$		$(5.70 \pm 0.14) \times 10^{-3}$						
Γ ₁₄₉	$K^+ K^- \pi^+ \pi^0$		$(6.62 \pm 0.32) \times 10^{-3}$						
Γ ₁₅₀	$K_{S}^{0}K_{S}^{0}\pi^{+}$		(2.70 \pm 0.13) $ imes$ 10 $^{-3}$						
Γ_{151}	$K^{0}_{S}K^{0}_{S}\pi^{+}\pi^{0}$		(1.34 \pm 0.21) $ imes$ 10 $^{-3}$						
Γ_{152}	$K^0_S K^+ \eta$		(1.8 \pm 0.5) $ imes$ 10 $^{-4}$						
Γ ₁₅₃	$K^{+}K^{0}_{S}\pi^{+}\pi^{-}$		(1.89 \pm 0.13) $\times10^{-3}$						
Г ₁₅₄	$K^0_{S} K^{\overline{+}} \pi^0 \pi^0$		(5.8 \pm 1.3) $ imes$ 10 ⁻⁴						
Γ ₁₅₅	$K^{\check{0}}_{S} K^{-} 2 \pi^{+}$		(2.27 \pm 0.13) $\times10^{-3}$						

 Γ_{156} $K^+ K^- 2\pi^+ \pi^-$ (2.3 \pm 1.2) imes 10⁻⁴

A few poorly measured branching fractions:

Γ ₁₅₇	$\phi \pi^+ \pi^0$	(2.3	\pm 1.0) %	
Γ ₁₅₈	$\phi \rho^+$	< 1.5		%	CL=90%
Г ₁₅₉	${\it K}^+ {\it K}^- \pi^+ \pi^0$ non- ϕ	(1.5	+ 0.7 - 0.6) %	

Doubly Cabibbo-suppressed modes

Г	$\kappa + \pi^0$	$(200 + 0.01) \times 10^{-4}$	C 1 1
' 160	$\mathbf{N} = \mathbf{M}$	$(2.08 \pm 0.21) \times 10^{-1}$	S=1.4
Γ ₁₆₁	$K^+\eta$	(1.25 \pm 0.16) $\times10^{-4}$	S=1.1
Γ ₁₆₂	$K^+ \eta'(958)$	(1.85 \pm 0.20) $\times10^{-4}$	
Γ ₁₆₃	$K^+ 2\pi^0$	(2.1 \pm 0.4) $ imes$ 10 ⁻⁴	
Γ ₁₆₄	$K^{*}(892)^{+}\pi^{0}$	$(3.4 \pm 1.4) imes 10^{-4}$	
Γ ₁₆₅	$K^+\pi^+\pi^-$	(4.91 \pm 0.09) $\times10^{-4}$	
Γ ₁₆₆	$K^+ ho^0$	(1.9 \pm 0.5) $ imes$ 10 $^{-4}$	
Γ ₁₆₇	$K^+ \eta \pi^0$	(2.1 \pm 0.5) $ imes$ 10 ⁻⁴	
Γ ₁₆₈	$K^*(892)^+\eta$	(4.4 $^+$ $^+$ $^{1.8}$) $ imes$ 10 $^{-4}$	
Γ ₁₆₉	$K^{*}(892)^{0}\pi^{+}$, $K^{*}(892)^{0} ightarrow$	(2.3 \pm 0.4) $\times10^{-4}$	
Γ ₁₇₀	${\scriptstyle {\cal K}^+\pi^-} {\scriptstyle {\cal K}^+f_0(980)}, \ f_0(980) ightarrow$	(4.4 \pm 2.6) $\times10^{-5}$	
Г ₁₇₁	${ ilde K_2^{\pi^+\pi^-}}$ (1430) $^0\pi^+$, ${ ilde K_2^*}$ (1430) $^0 ightarrow$	(3.9 \pm 2.7) $\times10^{-5}$	
Г ₁₇₂	$K^+\pi^-$ $K^+\pi^+\pi^-$ nonresonant	not seen	
Γ ₁₇₃	$K^+\pi^+\pi^-\pi^0$	(1.21 \pm 0.09) $ imes$ 10 $^{-3}$	
Γ ₁₇₄	${\cal K}^+\pi^+\pi^-\pi^0$ nonresonant	(1.10 \pm 0.07) $\times10^{-3}$	
Г ₁₇₅	$K^+\omega$	(5.7 $^+$ $^+$ $^{2.5}$) $ imes$ 10 $^{-5}$	
Γ_{176}	2K ⁺ K ⁻	(6.14 \pm 0.11) $ imes$ 10 $^{-5}$	
Γ ₁₇₇	$\phi(1020)^0 K^+$	$< 2.1 \times 10^{-5}$	CL=90%
Γ ₁₇₈	$K^+ \phi$ (1020), $\phi \rightarrow K^+ K^-$	$(4.4 \pm 0.6) imes 10^{-6}$	
Γ ₁₇₉	$K^+(K^+K^-)$ _{S-wave}	(5.77 \pm 0.12) $\times10^{-5}$	

$\Delta C = 1$ weak neutral current (C1) modes, or Lepton Family number (LF) , or Lepton number (L), or Baryon number (B) violating modes

Γ ₁₈₀	$\pi^+ e^+ e^-$	C1	< 1.1		imes 10 ⁻⁶	CL=90%
Γ_{181}	$\pi^{+}\pi^{0}e^{+}e^{-}$		< 1.4		imes 10 ⁻⁵	CL=90%
Γ ₁₈₂	$\pi^+ \phi$, $\phi ightarrow ~e^+ e^-$		[e] (1.7	$^{+}$ 1.4 $^{-}$ 0.9	$) imes 10^{-6}$	
Γ ₁₈₃	$\pi^+ \mu^+ \mu^-$	C1	< 6.7		imes 10 ⁻⁸	CL=90%
Γ ₁₈₄	$\pi^+\phi$, $\phi ightarrow \mu^+\mu^-$		[e] (1.8	\pm 0.8	$) imes 10^{-6}$	
Γ ₁₈₅	$ ho^+\mu^+\mu^-$	C1	< 5.6		imes 10 ⁻⁴	CL=90%
Γ ₁₈₆	$K^+ e^+ e^-$		[f] < 8.5		imes 10 ⁻⁷	CL=90%

Γ ₁₈₇	$K^+ \pi^0 e^+ e^-$		<	1.5	imes 10 ⁻⁵	CL=90%
Γ ₁₈₈	$K_{S}^{0}\pi^{+}e^{+}e^{-}$		<	2.6	imes 10 ⁻⁵	CL=90%
Γ ₁₈₉	$K_{S}^{0}K^{+}e^{+}e^{-}$		<	1.1	$ imes 10^{-5}$	CL=90%
Γ ₁₉₀	$K^+\mu^+\mu^-$		[<i>f</i>] <	5.4	$ imes 10^{-8}$	CL=90%
Г ₁₉₁	$\pi^+ e^+ \mu^-$	LF	<	2.1	imes 10 ⁻⁷	CL=90%
Γ ₁₉₂	$\pi^+ e^- \mu^+$	LF	<	2.2	$\times 10^{-7}$	CL=90%
Γ ₁₉₃	$K^+ e^+ \mu^-$	LF	<	7.5	imes 10 ⁻⁸	CL=90%
Г ₁₉₄	$K^+ e^- \mu^+$	LF	<	1.0	$\times 10^{-7}$	CL=90%
Г ₁₉₅	$\pi^- 2e^+$	L	<	5.3	$\times 10^{-7}$	CL=90%
Γ ₁₉₆	$\pi^- 2\mu^+$	L	<	1.4	$\times 10^{-8}$	CL=90%
Г ₁₉₇	$\pi^- e^+ \mu^+$	L	<	1.3	$\times 10^{-7}$	CL=90%
Γ ₁₉₈	$ ho^- 2\mu^+$	L	<	5.6	imes 10 ⁻⁴	CL=90%
Γ ₁₉₉	$K^{-}2e^{+}$	L	<	9	imes 10 ⁻⁷	CL=90%
Γ ₂₀₀	$K^0_S \pi^- 2e^+$		<	3.3	imes 10 ⁻⁶	CL=90%
Γ ₂₀₁	$K^-\pi^0 2e^+$		<	8.5	imes 10 ⁻⁶	CL=90%
Γ ₂₀₂	$K^- 2\mu^+$	L	<	1.0	imes 10 ⁻⁵	CL=90%
Γ ₂₀₃	$\mathcal{K}^- e^+ \mu^+$	L	<	1.9	imes 10 ⁻⁶	CL=90%
Γ ₂₀₄	$K^{*}(892)^{-}2\mu^{+}$	L	<	8.5	imes 10 ⁻⁴	CL=90%
Г ₂₀₅	Λe^+	L,B	<	1.1	imes 10 ⁻⁶	CL=90%
Γ ₂₀₆	$\overline{\Lambda}e^+$	L,B	<	6.5	imes 10 ⁻⁷	CL=90%
Γ ₂₀₇	$\Sigma^0 e^+$	L,B	<	1.7	imes 10 ⁻⁶	CL=90%
Γ ₂₀₈	$\overline{\Sigma}{}^{0}e^{+}$	L,B	<	1.3	imes 10 ⁻⁶	CL=90%
Г ₂₀₉	$\overline{n}e^+$		<	1.43	imes 10 ⁻⁵	CL=90%
Γ ₂₁₀	ne ⁺		<	2.91	imes 10 ⁻⁵	CL=90%

- [a] The branching fraction for this mode may differ from the sum of the submodes that contribute to it, due to interference effects. See the relevant papers.
- [b] These subfractions of the $K^- 2\pi^+$ mode are uncertain: see the Particle Listings.
- [c] See the listings under " $D \rightarrow K \pi \pi \pi$ partial wave analyses" and our 2008 Review (Physics Letters **B667** 1 (2008)) for measurements of submodes of this mode.
- [d] The unseen decay modes of the resonances are included.
- [e] This is not a test for the $\Delta C=1$ weak neutral current, but leads to the $\pi^+ \ell^+ \ell^-$ final state.
- [f] This mode is not a useful test for a $\Delta C=1$ weak neutral current because both quarks must change flavor in this decay.

FIT INFORMATION

An overall fit to 33 branching ratios uses 43 measurements to determine 17 parameters. The overall fit has a $\chi^2=$ 64.4 for 26 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$.

×19	0									
×26	0	0								
×30	7	1	0							
x ₃₉	0	0	0	0						
×41	0	0	0	0	83					
×50	0	5	0	1	0	0				
×52	0	28	0	3	0	0	19			
×86	0	5	0	1	0	0	4	19		
×98	0	6	0	1	0	0	4	22	4	
x ₁₁₉	0	5	0	0	0	0	3	17	75	4
x ₁₂₂	0	4	0	0	0	0	3	14	3	3
x ₁₃₁	0	5	0	1	0	0	4	19	4	4
x ₁₃₃	0	9	0	1	0	0	29	31	6	7
×160	0	1	0	0	0	0	1	5	1	1
×161	0	1	0	0	0	0	0	2	0	0
x ₁₆₂	0	2	0	0	0	0	1	6	1	1
	x ₁₈	×19	^x 26	×30	×39	×41	×50	×52	×86	×98
X122	2									
X131	3	3								
X133	5	4	6							
×160	1	1	1	1						
×161	0	14	0	1	0					
x ₁₆₂	1	1	32	2	0	0				
102	×119	×122	×131	×133	^x 160	×161				

D⁺ BRANCHING RATIOS

Some now-obsolete measurements have been omitted from these Listings.

— *c*-quark decays –

$\Gamma(c \rightarrow e^+ \text{ anything}) / \Gamma(c \rightarrow \text{ anything})$

For the Summary Table, we only use the average of e^+ and μ^+ measurements from $Z^0 \rightarrow c \overline{c}$ decays; see the second data block below.

VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
$0.103 \pm 0.009 \substack{+0.009 \\ -0.008}$	378	¹ ABBIENDI	99K OPAL	$Z^0 \rightarrow c \overline{c}$

¹ABBIENDI 99K uses the excess of right-sign over wrong-sign leptons opposite reconstructed $D^*(2010)^+ \rightarrow D^0 \pi^+$ decays in $Z^0 \rightarrow c \overline{c}$.

$\Gamma(c \rightarrow \mu^+ \text{anything}) / \Gamma(c \rightarrow \text{anything})$

For the Summary Table, we only use the average of e^+ and μ^+ measurements from $Z^0 \rightarrow c \overline{c}$ decays; see the next data block.

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
0.082±0.005 OUR AV	/ERAGE				
$0.073\!\pm\!0.008\!\pm\!0.002$	73	KAYIS-TOPAK	(.0.5	CHRS	$ u_{\mu}$ emulsion
$0.095 \!\pm\! 0.007 \!+\! 0.014 \\ -\! 0.013$	2829	ASTIER	00 D	NOMD	$ u_{\mu} \operatorname{Fe} ightarrow \ \mu^{-} \mu^{+} \operatorname{X}$
$0.090 \!\pm\! 0.007 \!+\! 0.007 \!-\! 0.006$	476	¹ ABBIENDI	99K	OPAL	$Z^0 \rightarrow c \overline{c}$
$0.086 \!\pm\! 0.017 \!+\! 0.008 \\ -\! 0.007$	69	² ALBRECHT	92F	ARG	e^+e^-pprox 10 GeV
$0.078 \!\pm\! 0.009 \!\pm\! 0.012$		ONG	88	MRK2	e^+e^- 29 GeV
$0.078\!\pm\!0.015\!\pm\!0.02$		BARTEL	87	JADE	e ⁺ e ⁻ 34.6 GeV
$0.082 \!\pm\! 0.012 \!+\! 0.02 \!-\! 0.01$		ALTHOFF	84G	TASS	e ⁺ e ⁻ 34.5 GeV
• • • We do not use \cdot	the followi	ng data for averag	es, fit	s, limits,	etc. • • •
$0.093 \!\pm\! 0.009 \!\pm\! 0.009$	88	KAYIS-TOPAK	(.02	CHRS	See KAYIS-TOPAKSU 05
$0.089\!\pm\!0.018\!\pm\!0.025$		BARTEL	85J	JADE	See BARTEL 87
¹ ABBIENDI 99К us structed <i>D</i> *(2010)	ses the ex $()^+ ightarrow D^0$	cess of right-sign π^+ decays in Z^0	over $v \rightarrow c$	wrong-sig c .	gn leptons opposite recon-

 2 ALBRECHT 92F uses the excess of right-sign over wrong-sign leptons in a sample of events tagged by fully reconstructed $D^*(2010)^+ \rightarrow D^0 \pi^+$ decays.

$\Gamma(c \rightarrow \ell^+ \text{ anything}) / \Gamma(c \rightarrow \text{ anything})$

This is an average (not a sum) of e^+ and μ^+ measurements.

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.096 ±0.004 OUR AV	ERAGE				
$0.0958 \pm 0.0042 \pm 0.0028$	1828	¹ ABREU	000	DLPH	$Z^0 \rightarrow c \overline{c}$
$0.095 \pm 0.006 + 0.007 = 0.006$	854	² ABBIENDI	99ĸ	OPAL	$Z^0 \rightarrow c \overline{c}$

¹ABREU 000 uses leptons opposite fully reconstructed $D^*(2010)^+$, D^+ , or D^0 mesons. $^2\,\text{ABBIENDI}$ 99K uses the excess of right-sign over wrong-sign leptons opposite reconstructed $D^*(2010)^+ \rightarrow D^0 \pi^+$ decays in $Z^0 \rightarrow c \overline{c}$.

$\Gamma(c \rightarrow VALUE$	D*(2010)	+ anything)/ 	$\frac{\Gamma(c \rightarrow \text{anyt})}{DOCUMENT ID}$	hing) <u>TECN</u>	<u>COMMENT</u>
0.255 ± 0	0.015±0.008	2371	¹ ABREU	000 DLPH	$Z^0 \rightarrow c \overline{c}$
1 ABR	EU 000 uses	slow pions opp	osite fully recon	structed $D^*(20)$	010) $^+$, D^+ , or D^0 mesons
as a	signal of D^*	(2010) [—] produ	iction.		
			Inclusive mo	des ———	-
Γ(e ⁺ se	emileptonic	$/\Gamma_{\text{total}}$	(802)0 e+ , ,	$0_{e}+1, n_{e}+$	Γ_1/Γ
br	anching fract	ions is 15.3 \pm	0.3%.	<i>ve</i> , <i>ne</i>	$\nu_e, \rho \in \nu_e, \text{ and } \omega \in \nu_e$
VALUE (%			DOCUMENT	ID TECN	COMMENT
10.07 ± ().30 OUR AV	\mathbf{ERAGE}	1 ASNED		$2 + a^{+} = a^{+} = 2774 \text{ MeV}$
15.2 ± 0 •••W	1.10 ± 0.29 1.9 ± 0.8 We do not use	521 ± 32 the following of	ABLIKIM data for average	07G BES	$2 e^+e^- \approx \psi(3770)$ etc. • • •
16.13 ± 0 17.0 ± 1	0.20 ± 0.33 1.9 ± 0.7	$8798\pm105\\158$	² ADAM BALTRUS	06A CLE AIT85B MRK	D See ASNER 10 (3 e ⁺ e ⁻ 3.77 GeV
semi ² Usin inclu pred	leptonic widt g the D^+ ar sive e^+ widt iction of 1.	hs is 0.985 \pm 0 nd D^0 lifetime ths is 0.985 \pm	b).015 \pm 0.024. s, ADAM 06A 0.028 \pm 0.015	finds that the 5, consistent v	ratio of the D^+ and D^0 vith the isospin-invariance
$\Gamma(\mu^+)$	$nything)/\Gamma_{1}$	total		TECH	Γ2/Γ
<u>VALUE (%</u>)	EV15	1 ARLIKIM		$\frac{COMMENT}{a^+a^-} \sim \psi(3772)$
¹ ABL be 2	IKIM 08∟ find .59 ± 0.70 ±	ds the ratio of 0.25, in accor	$D^+ ightarrow \mu^+ X$ d with the ratio	and $D^0 ightarrow \mu^-$ of D^+ and D	$\psi = \psi = -\infty \psi(3112)$ $\psi = X$ branching fractions to ψ^0 lifetimes, 2.54 \pm 0.02.
Г(<i>K</i> -а	nvthing)/[total			Га/Г
VALUE (%)	EVTS	DOCUMENT	ID TECN	COMMENT
25.7±1.	4 OUR AVER	RAGE			
$24.7 \pm 1.$	3±1.2	631 ± 33	ABLIKIM	07G BES2	$e^+ e^- pprox \psi$ (3770)
$27.8^{+3.}_{-3.}$	6 1		BARLAG	92c ACCN	/ π^- Cu 230 GeV
$27.1 \pm 2.$	3±2.4		COFFMAN	91 MRK	3 e^+e^- 3.77 GeV
$\Gamma(K_S^0)$ a	nything)/F	total			Γ₄/Γ
VALUE (%)	EVTS	DOCUMENT ID	TECN	COMMENT
33.11±0).13±0.36	95k	ABLIKIM	23A0 BES3	e^+e^- at 3.773 GeV
• • • W	e do not use	the following of	data for average	es, fits, limits,	etc. ● ● ●
30.25 ± 2 30.6 ± 3	2.75 ± 1.65 3.25 ± 2.15	244	¹ ABLIKIM ² COFFMAN	06∪ BES2 91 MRK3	e ⁺ e ⁻ at 3773 MeV e ⁺ e ⁻ 3.77 GeV
¹ ABL take	IKIM 06∪ rep as twice the	oorts B($D^{U} ightarrow$	$K^{U}X \operatorname{or} \overline{K}^{U}X)$ tion for $D^+ \to$	$= (60.5 \pm 5.5) \\ \kappa_{S}^{0} X.$	$(\pm 3.3) imes 10^{-2}$ which we
² COF take	FMAN 91 rep as twice the	ports B($D^+ ightarrow$	$K^0 X \text{ or } \overline{K}^0 X$ tion for $D^+ \to$	(61.2 ± 6.1) $K_{S}^{0} X.$	$(5\pm4.3) imes10^{-2}$ which we

https://pdg.lbl.gov Page 11

$\Gamma(K^+ \text{ anything})/\Gamma$	total				Γ	5/ Г
VALUE (%)	EVTS	DOCUMENT IL)	TECN	COMMENT	_
5.9±0.8 OUR AVER/	AGE			5500		
$6.1 \pm 0.9 \pm 0.4$	189 ± 27	ABLIKIM	070	G BES2	$e^+e^- \approx \psi(3770)$	
$5.5 \pm 1.3 \pm 0.9$		COFFMAN	91	MRK3	e'e 3.77 Gev	
$\Gamma(K^*(892)^- \text{ anyth})$	ing)/Γ _{total}				Γ.	₅ /Г
VALUE (%)	EVTS	DOCUMENT I	D	TECN	COMMENT	
5.7±5.2±0.7	$\textbf{7.2} \pm \textbf{6.5}$	ABLIKIM	06	50 BES2	e^+e^- at 3773 Me	εV
$\Gamma(\overline{K}^*(892)^0 \text{ anythi})$	ng)/Г _{total}		-	TECH	Γ·	7/F
<u>VALUE (%)</u>						
23.2±4.5±3.0	189 ± 30	ABLIKIM	I 05P	BES	$e + e \approx 3773$ MeV	,
$\Gamma(K^*(892)^0 \text{ anythi})$	ng)/Γ _{total}				Γ	8/Г
VALUE (%)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<6.6	90	ABLIKIM	05 P	BES	$e^+e^- \approx 3773$ MeV	/
$\Gamma(\eta \text{ anything})/\Gamma_{to}$	tal	from of decours			Γ,	9/F
VALUE (%)	EVTS	DOCUMENT	ID	TECN	COMMENT	
6.3±0.5±0.5	1972 ± 142	HUANG	0	6B CLE	$\frac{1}{e^+e^-}$ at $\psi(3770)$)
					_	,
$\Gamma(\eta' \text{ anything})/\Gamma_{to}$	otal				1 <u>1</u>	0/I
VALUE (%)	<u> </u>	DOCUMENT I	ID	<u>TECN</u>	<u>COMMENT</u>	
1.04±0.16±0.09	82 ± 13	HUANG	06	5B CLEO	e^-e^- at $\psi(3770)$	1
$\Gamma(\phi \text{ anything})/\Gamma_{to}$	tal				Г ₁ ;	<u>1</u> /Γ
VALUE (%)	EVTS	DOCUMENT IL)	TECN	COMMENT	
1.12 ± 0.04 OUR A	VERAGE				1	
$1.135 \pm 0.034 \pm 0.031$	2.7k	ABLIKIM	19/	AY BES3	e ⁺ e ⁻ at 3773 Me	эV
$1.03 \pm 0.10 \pm 0.07$	248 ± 21	HUANG	06	B CLEO	$e^{-}e^{-}$ at $\psi(3770)$	1
$\Gamma(\pi^+\pi^+\pi^-)$ anythi	ing)/Γ _{total}				Г1;	₂ /Γ
VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT	-
$15.25 {\pm} 0.09 {\pm} 0.18$	124k	ABLIKIM	23AI	BES3	2.93 fb $^{-1}$, e^+e^- a $\psi(3770)$	t
	— Leptonic	and semilept	onic ı	modes		
$\Gamma(a^{\pm}, \lambda)/\Gamma$	•				F.	, /F
$(e^{\nu} \nu_e)/ $ total	CI %	DOCUMENT ID		TECN		3/1
<u>∨ALUE</u> <8.8 × 10−6	<u> </u>		00		$\frac{COMMENT}{2}$ at $\frac{1}{2}$ (2770)	
• • • We do not use	the following c	lata for averages	s, fits,	limits, e	tc. $\bullet \bullet \bullet$	
$< 2.4 \times 10^{-5}$	90	ARTUSO	05A	CLEO	See EISENSTEIN 08	3
					_	
$\left(\gamma e^{\perp} \nu_{e}\right) / \Gamma_{\text{total}}$					Г <u>1</u> ,	4/F
VALUE	<u> </u>	DOCUMENT ID		TECN	COMMENT	
$<3.0 \times 10^{-5}$	90	ABLIKIM	17M	BES3	e^+e^- at 3.773 GeV	/
¹ This ABLIKIM 17	M limit is for p	hotons with ene	ergies (greater t	han 10 MeV.	
https://w.d.w.lhl		Daga 10		Creat	ad. 7/05/0004 17	7.01
nups://pag.ibi.go	/	rage 12		Creat	eu: 7/25/2024 17	:21

 $\Gamma(\mu^+ \nu_\mu) / \Gamma_{\text{total}}$ Γ_{15}/Γ See the note on "Decay Constants of Charged Pseudoscalar Mesons" in the D_{c}^{+} Listings. *VALUE* (units 10^{-4}) EVTS DOCUMENT ID TECN COMMENT 3.74± 0.17 OUR AVERAGE ¹ ABLIKIM 409 ± 21 14F BES3 e^+e^- at $\psi(3770)$ $3.71 \pm \ 0.19 \pm 0.06$ ² EISENSTEIN 08 CLEO e^+e^- at $\psi(3770)$ $3.82 \pm 0.32 \pm 0.09$ 150 ± 12 • • • We do not use the following data for averages, fits, limits, etc. • • $12.2 \ \begin{array}{c} + 11.1 \\ - 5.3 \end{array} \ \pm 1.0$ ³ ABLIKIM 3 05D BES $e^+e^- \approx 3.773 \text{ GeV}$ $4.40 \pm \ 0.66 {+0.09 \atop -0.12}$ 47 ± 7 ⁴ ARTUSO 05A CLEO See EISENSTEIN 08 ⁵ BONVICINI $3.5~\pm~1.4~\pm0.6$ 7 04A CLEO Incl. in ARTUSO 05A 8 + 16 + 5 - 2⁶ BAI $e^+e^- \rightarrow D^{*+}D^-$ 98B BES ¹ABLIKIM 14F obtain $|V_{cd}| \cdot f_{D^+} = (45.75 \pm 1.20 \pm 0.39)$ MeV, and using $|V_{cd}| = 0.22520 \pm 0.00065$ gets $f_{D^+} = (203.2 \pm 5.3 \pm 1.8)$ MeV. ²EISENSTEIN 08, using the D^+ lifetime and assuming $|V_{cd}| = |V_{us}|$, gets $f_{D^+} =$ (205.8 \pm 8.5 \pm 2.5) MeV from this measurement. 3 ABLIKIM 05D finds a background-subtracted 2.67 \pm 1.74 D^+ o $\mu^+
u_{\mu}$ events, and from this obtains $f_{D^+}=371^{+129}_{-119}\pm25$ MeV. ⁴ARTUSO 05A obtains $f_{D^+} = 222.6 \pm 16.7 + 2.8 - 3.4$ MeV from this measurement.

⁵ BONVICINI 04A finds eight events with an estimated background of one, and from the branching fraction obtains $f_{D^+} = 202 \pm 41 \pm 17$ MeV.

⁶ BAI 98B obtains $f_{D^+} = (300 + 180 + 80)$ MeV from this measurement.

$$\Gamma(\tau^+ \nu_{\tau}) / \Gamma_{\text{total}}$$

VALUE (units 10^{-3}) CL% EVTS DOCUMENT ID TECN COMMENT ¹ ABLIKIM 19BG BES3 e^+e^- at 3773 MeV 137 $1.20 \pm 0.24 \pm 0.12$ • • • We do not use the following data for averages, fits, limits, etc. • 80 CLEO e^+e^- at $\psi(3770)$ <1.2 90 EISENSTEIN 06A CLEO See EISENSTEIN 08 <2.1 90 RUBIN

¹ABLIKIM 19BG observe this mode with a significance of 5.1 σ .

$\Gamma(K^{\circ}e^{+}\nu_{e})/\Gamma_{to}$	tal				Г ₁₇ /Г
VALUE (%)	EVTS	DOCUMENT I	D	TECN	COMMENT
$8.72\ \pm 0.09\ \text{OUR}$	AVERAGE				
$8.68 \pm 0.14 \pm 0.16$	1172	ABLIKIM	21 BA	BES3	e^+e^- at 3.773 GeV
$8.60 \pm 0.06 \pm 0.15$	26k	ABLIKIM	17S	BES3	Using $\overline{K}^0 \rightarrow \pi^+\pi^-$
$8.59\ \pm 0.14\ \pm 0.21$	5013	ABLIKIM	16V	BES3	Using $\overline{K}{}^{0} ightarrow\ 2\pi^{0}$
$8.962 \pm 0.054 \pm 0.20$	6 40k	¹ ABLIKIM	15AF	BES3	from $D^+ \rightarrow K_L e^+ \nu_e$
$8.83 \pm 0.10 \pm 0.20$	8.5k	² BESSON	09	CLEO	from $D^+ \rightarrow K_S e^+ \nu_e$
$8.95 \pm 1.59 \pm 0.67$	34	³ ABLIKIM	05A	BES	from $D^+ \rightarrow K_S e^+ \nu_e$
$\bullet \bullet \bullet$ We do not us	se the following	data for avera	ges, fits,	limits,	etc. • • •
$8.53 \pm 0.13 \pm 0.23$		⁴ DOBBS	08	CLEO	See BESSON 09
$8.71 \pm 0.38 \pm 0.37$	545	HUANG	05 B	CLEO	See DOBBS 08
¹ ABLIKIM 15AF	report $\Gamma(D^+$ -	$\rightarrow K_L e^+ \nu_e)/I$	「 _{total} =	(4.481	\pm 0.027 \pm 0.103)%. See
also the form-fa	ctor parameter	s near the end o	of this D	+ Listi	ng.

https://pdg.lbl.gov

 Γ_{16}/Γ

²See the form-factor parameters near the end of this D^+ Listing.

³ The ABLIKIM 05A result together with the $D^0 \rightarrow K^- e^+ \nu_e$ branching fraction of ABLIKIM 04C and Particle Data Group lifetimes gives $\Gamma(D^0 \rightarrow K^- e^+ \nu_e) / \Gamma(D^+ \rightarrow \overline{K}^0 e^+ \nu_e) = 1.08 \pm 0.22 \pm 0.07$; isospin invariance predicts the ratio is 1.0.

⁴ DOBBS 08 establishes $\left|\frac{V_{cd}}{V_{cs}} \cdot \frac{f_{\pm}^{\pi}(0)}{f_{\pm}^{K}(0)}\right| = 0.188 \pm 0.008 \pm 0.002$ from the D^{+} and D^{0} decays to $\overline{K}e^{+}\nu_{e}$ and $\pi e^{+}\nu_{e}$. It also finds $\Gamma(D^{0} \rightarrow K^{-}e^{+}\nu_{e}) / \Gamma(D^{+} \rightarrow \overline{K}^{0}e^{+}\nu_{e}) = 1.06 \pm 0.02 \pm 0.03$; isospin invariance predicts the ratio is 1.0.

 $\Gamma(\overline{K}^0 \mu^+ \nu_\mu) / \Gamma_{\text{total}}$ Γ_{18}/Γ VALUE (units 10^{-2}) DOCUMENT ID EVTS TECN COMMENT 8.76±0.19 OUR FIT 16G BES3 e^+e^- at 3773 MeV $8.72 \pm 0.07 \pm 0.18$ 21k ABLIKIM • • • We do not use the following data for averages, fits, limits, etc. 29 ± 6 07 BES2 e^+e^- at 3773 MeV $10.3 \ \pm 2.3 \ \pm 0.8$ ABLIKIM $\Gamma(\overline{K}^{0}\mu^{+}\nu_{\mu})/\Gamma(K^{-}2\pi^{+})$ Γ_{18}/Γ_{52} DOCUMENT ID TECN COMMENT 0.934±0.025 OUR FIT Error includes scale factor of 1.2. 04E FOCS γ nucleus, $\overline{E}_{\gamma}~pprox~180~{
m GeV}$ $1.019 \pm 0.076 \pm 0.065$ 555 ± 39 LINK $\Gamma(K^{-}\pi^{+}e^{+}\nu_{e})/\Gamma_{\text{total}}$ Γ_{19}/Γ VALUE (units 10^{-2}) EVTS DOCUMENT ID TECN COMMENT 4.02±0.18 OUR FIT Error includes scale factor of 3.2. $3.77 \pm 0.03 \pm 0.08$ 16F BES3 e^+e^- at $\psi(3770)$ 18.3k ABLIKIM • • • We do not use the following data for averages, fits, limits, etc. • 060 BES2 e^+e^- at 3773 MeV $3.50 \!\pm\! 0.75 \!\pm\! 0.27$ ABLIKIM 29 $3.5 \begin{array}{c} +1.2 \\ -0.7 \end{array} \pm 0.4$ 14 BAI 91 MRK3 $e^+e^- \approx 3.77$ GeV $\Gamma(K^-\pi^+e^+\nu_e)/\Gamma(K^-2\pi^+)$ Γ_{10}/Γ_{52} EVTS DOCUMENT ID TECN COMMENT VALUE 0.428 ±0.018 OUR FIT Error includes scale factor of 3.7. 0.4380±0.0036±0.0042 70k±363 DEL-AMO-SA...111 BABR $e^+e^- \approx 10.6$ GeV $\Gamma(\overline{K}^*(892)^0 e^+ \nu_e, \overline{K}^*(892)^0 \rightarrow K^- \pi^+) / \Gamma(K^- \pi^+ e^+ \nu_e)$ Γ_{20}/Γ_{10} VALUE (%) DOCUMENT ID TECN COMMENT 93.94±0.27 OUR AVERAGE 16F BES3 e^+e^- at $\psi(3770)$ $93.93 \pm 0.22 \pm 0.18$ ABLIKIM DEL-AMO-SA..111 BABR $e^+e^- \approx 10.6$ GeV $94.11 \!\pm\! 0.74 \!\pm\! 0.75$ $\Gamma((K^-\pi^+)_{[0.8-1.0]\text{GeV}}e^+\nu_e)/\Gamma_{\text{total}}$ Γ_{21}/Γ VALUE (units 10^{-2}) EVTS DOCUMENT ID TECN COMMENT 16F BES3 e^+e^- at $\psi(3770)$ $3.39 \pm 0.03 \pm 0.08$ 16.2k ABLIKIM $\Gamma((K^{-}\pi^{+})_{S-wave}e^{+}\nu_{e})/\Gamma_{total}$ Γ_{22}/Γ VALUE (units 10^{-3}) DOCUMENT ID TECN COMMENT 16F BES3 e^+e^- at $\psi(3770)$ $2.28 \pm 0.08 \pm 0.08$ ABLIKIM https://pdg.lbl.gov Page 14 Created: 7/25/2024 17:21 Citation: S. Navas et al. (Particle Data Group), Phys. Rev. D ${\bf 110},\,030001$ (2024)

$\Gamma((K^-\pi^+)_{S-wave})$	$e^+\nu_e)/\Gamma(k$	$(\pi^+ e^+ \nu_e)$			Γ ₂₂ /Γ ₁ 9
VALUE (%)		DOCUMENT ID		TECN	COMMENT
5.89 ± 0.17 OUR AVE	RAGE				
$6.05\!\pm\!0.22\!\pm\!0.18$		ABLIKIM	16F	BES3	e^+e^- at $\psi(3770)$
$5.79 \pm 0.16 \pm 0.15$		DEL-AMO-SA	111	BABR	e^+e^-pprox 10.6 GeV
$\Gamma(\overline{K}^*(1410)^0 e^+ \nu_e)$, K *(1410) ⁽	$0 \rightarrow K^{-}\pi^{+})/$	′Γ _{tota}	I	Г ₂₃ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
$<6 \times 10^{-3}$	90	DEL-AMO-SA	111	BABR	e^+e^-pprox 10.6 GeV
$\Gamma(\overline{K}_2^*(1430)^0 e^+ \nu_e$, <i>K</i>*(1430)⁽	$0 \rightarrow K^{-}\pi^{+})/$	Γ _{tota}	I	Г ₂₄ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
$<5 \times 10^{-4}$	90	DEL-AMO-SA	111	BABR	e^+e^-pprox 10.6 GeV
$\Gamma(\kappa^-\pi^+e^+\nu_e \text{ nor }$	resonant)/	F_{total}			Г ₂₅ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<0.007	90	ANJOS	89 B	E691	Photoproduction
$\Gamma(\overline{K}^*(892)^0 e^+ \nu_e)$ Unseen decay m measurements o	$ \int \mathbf{\Gamma}_{\mathbf{total}} \\ \text{nodes of } \overline{K}^* (8) \\ \text{if } D^+ \to \overline{K}^* $	$(892)^0$ are include $(892)^0 \ell^+ u_\ell$ for	ed. Se m-fact	ee the er tor ratio	Γ₂₆/Γ nd of the <i>D</i> ⁺ Listings for s.
VALUE (units 10^{-2})	EVTS	DOCUME	NT ID	TECN	COMMENT
5.40 ± 0.10 OUR FIT	Error include	es scale factor of	1.1.	611	
5.40 \pm 0.10 OUK AVEI	16 Ok			- DEC2	a^+a^- at $a/(2770)$
$5.51 \pm 0.05 \pm 0.12$ 5.52 \pm 0.07 \pm 0.13	10.2k ~ 5k	BRIERE	10 10		$e^+e^- = \psi(3770)$
• • • We do not use t	the following of	data for average	s. fits.	limits, e	etc. • • •
$5.06 \pm 1.21 \pm 0.40$	28 ± 7		M 060	RES2	e^+e^- at 3773 MeV
$5.56 \pm 0.27 \pm 0.23$	422 ± 7	1 ¹ HUANG	05	3 CLEO	e^+e^- at $\psi(3770)$
¹ HUANG 05B finds isospin invariance	$\Gamma(D^0 o K^{*-})$ predicts the ra	$e^+ \nu_e$) / Γ(D^- atio is 1.0.	$+ \rightarrow$	$\overline{K}^{*0}e^+$	$ \nu_e) = 0.98 \pm 0.08 \pm 0.04 $
$\Gamma(\overline{K}^*(892)^0 e^+ \nu_e)$	$/\Gamma(K^-2\pi^+$)			Γ26/Γ52
Unseen decay m	, odes of the <i>F</i>	$\frac{7}{(892)^{0}}$ are ind	cluded	. See th	e end of the D ⁺ Listings
for measuremen	ts of $D^+ o$	$\overline{K^*}(892)^0\ell^+\nu_\ell$	form-	factor ra	atios.
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not use	the following of	data for average	s, fits,	limits, e	etc. ● ● ●
$0.74 \pm 0.04 \pm 0.05$	0	BRANDENB	02	CLEO	$e^+e^- \approx \Upsilon(4S)$
$0.62 \pm 0.04 \pm 0.09$	35	ADAMOVICH	. 02 91	OMEG	π^{-} 340 GeV
$0.55 \pm 0.08 \pm 0.10$	880	ALBRECHT	91	ARG	$e^+e^- \approx 10.4 \text{ GeV}$
$0.49\!\pm\!0.04\!\pm\!0.05$		ANJOS	89 B	E691	Photoproduction
$\Gamma(K^-\pi^+\mu^+ u_\mu)/\Gamma$	$(\overline{K}^0 \mu^+ \nu_\mu)$				Γ ₂₇ /Γ ₁₈
VALUE	\underline{EVIS}	DOCUMENT I			$\frac{\text{COMMENT}}{\overline{E}} = 100.011$
$0.417 \pm 0.030 \pm 0.023$	555 \pm 39	LINK	U4E	FUCS	γ nucleus, $E_{\gamma} pprox$ 180 GeV

$\Gamma(\kappa^{-}\pi^{+}\mu^{+}\nu_{\mu} \text{ nonreceived})$	esonant)	$/\Gamma(K^-\pi^+\mu^+)$	$\nu_{\mu})$	TECN	Г₂₉/Г₂₇
$0.0530 \pm 0.0074 + 0.0099 - 0.0096$	14k	LINK	051	FOCS	γ nucleus, $\overline{E}_{\gamma} pprox 180$ GeV
$\Gamma(\overline{K}^*(892)^0 \mu^+ \nu_{\mu}) / \Gamma$	- total				Г ₃₀ /Г
Unseen decay mod for measurements of	es of the of $D^+ o$	$\overline{K}^*(892)^0$ are in $\overline{K}^*(892)^0\ell^+ u_\ell$	cluded. form-	See the factor ra	e end of the <i>D</i> ⁺ Listings tios.
VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
5.27±0.15 OUR FIT 5.27±0.07±0.14	pprox 5k	BRIERE	10	CLEO	e^+e^- at $\psi(3770)$
$\Gamma(\overline{K}^*(892)^0 \mu^+ \nu_{\mu}) / \Gamma$	$\overline{K}^{0}\mu^{+}$	ν_{μ})			Г ₃₀ /Г ₁₈
Unseen decay mod	es of the	$\overline{K}^*(892)^0$ are in	cluded.	See the	e end of the <i>D</i> ⁺ Listings
for measurements of	of $D^+ o$	$\overline{K}^*(892)^0 \ell^+ \nu_\ell$	form-	factor ra	tios.
VALUE <u>E</u>	VTS	DOCUMENT I	D 1	TECN <u>(</u>	COMMENT
0.602±0.020 OUR FIT 0.594±0.043±0.033 5	55 ± 39	LINK	04e F	=OCS γ	$_{\gamma}$ nucleus, $\overline{E}_{\gamma} pprox$ 180 GeV
Unseen decay mod for measurements of	es of the of $D^+ \rightarrow$	$\overline{K}^*(892)^0$ are in $\overline{K}^*(892)^0 \ell^+ u_\ell$	cluded. form-	See the factor ra	e end of the <i>D</i> ⁺ Listings tios.
	<u>EVTS</u>	DOCUMENT ID	6 1 1	TECN	COMMENT
0.502 ± 0.010 OUR AVER	RAGE EI	ror includes scale	e factor	r of 1.2.	
$0.72\ \pm 0.10\ \pm 0.05$		BRANDENB	. 02	CLEO	$e^+e^-pprox \Upsilon(4S)$
$0.56 \pm 0.04 \pm 0.06$	875	FRABETTI	93E	E687	$\gamma{ m Be}\;\overline{E}_\gammapprox$ 200 GeV
$0.46 \pm 0.07 \pm 0.08$	224	KODAMA	92C	E653	π^- emulsion 600 GeV
• • • VVe do not use the	following	data for average	es, fits,	limits, e	tc. • • •
$0.602 \pm 0.010 \pm 0.021$	12k	- LINK	025	FUCS	γ nucleus, \approx 180 GeV
amplitude with the c LINK 02E.) This result	lominant to redun	the effects of an \overline{K}^{*0} amplitude. dant with results	(The of LIN	interfere K 04E els	a small S-wave $K^{-}\pi^{+}$ ence effect is reported in sewhere in these Listings.
$\Gamma(K^{-}\pi^{+}\pi^{0}\mu^{+}\nu_{\mu})/I$	Γ (<i>K</i> [−] π ⁺	$-\mu^+\nu_{\mu}$			Г ₃₁ /Г ₂₇
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	<u>COMMENT</u>
<0.042	90	FRABETTI	93E	E687	$\gamma{ m Be}\;\overline{E}_{\gamma}pprox$ 200 GeV
$\Gamma(\overline{K}_{1}(1270)^{0}e^{+}\nu_{e},\overline{I})$	$\overline{K}_{1}^{0} \rightarrow K$	$(-\pi^+\pi^0)/\Gamma_{tot}$	al		Гзэ/Г
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
$1.06 \pm 0.12 \stackrel{+0.08}{-0.10}$	120	¹ ABLIKIM	1 9 BH	BES3	e^+e^- at 3773 MeV
¹ ABLIKIM 19BH auote	es B(D^+	$\rightarrow \overline{K}_1(1270)^0 e^{-1}$	$+\nu_{a}$	= (2.30	$\pm 0.26^{+0.18}_{-0.12} \pm 0.25) \times$
10^{-3} , where the last	uncertaint	ty is due to $B(\overline{K}_1)$	(1270) ⁽	$0 \rightarrow K^{-}$	$(\pi^+ \pi^0) = 0.467 \pm 0.050.$

Citation: S. Navas et al. (Particle Data Group), Phys. Rev. D ${\bf 110},\,030001$ (2024)

$\Gamma(\overline{K}_{0}^{*}(1430)^{0}\mu^{+}\nu)$	$\nu_{\mu})/\Gamma(K^{-})$	$\pi^+ \mu^+ \nu_{\mu})$	re inclu	ıded			Гз	₃₃ /Г ₂₇
VALUE	CL%	DOCUMENT ID	ie meie	TECN	CON	<i>MENT</i>		
<0.0064	90	LINK	051	FOCS	γ A	, $\overline{E}_{\gamma} \approx$	180 GeV	V
Γ(Κ *(1680) ⁰ μ ⁺ ν	ν _μ)/Γ(Κ ⁻	$\pi^+ \mu^+ u_\mu)$					٢ ₃	₃₄ /Г ₂₇
Unseen decay r	nodes of th	e $\overline{K}^{*}(1680)^{0}$ a	re inclu	ıded.				
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	<u>CON</u>			
<0.04	90	LINK	051	FOCS	γ A	, $E_{\gamma} \approx$	180 Ge\	/
$\Gamma(\pi^0 e^+ \nu_e) / \Gamma_{\text{total}}$					CN I	601414F	17	Г ₃₅ /Г
$\frac{VALUE(\%)}{0.372\pm0.017}$ OUR A		<u>DUC</u> Error includes	<u>.UMENT</u> scale fa	<u>ID</u> <u>TE</u>	2.0	COMMEN	//	
$0.363 \pm 0.008 \pm 0.005$	3.44			170 RF	2.0. =53	Ilsing <i>m</i>	0 、 2~	,
$0.305 \pm 0.000 \pm 0.003$	9.4K 838		SON		 EO		γ ∠ ~ 1 a/s(377	(0)
• • We do not use	the followi	ng data for ave	rages 1	fits lim	its e		$\varphi(311)$	0)
$0.373 \pm 0.022 \pm 0.013$		2 00	DDC	00 CI	E0	See REG		
$0.373 \pm 0.022 \pm 0.013$ 0 44 +0 06 +0 03	63 +	9 HU	ANG	05 CL	FO	See DC	BBS 08	,
¹ See the form-fact	or paramet	ers near the end	d of thi	s D ⁺ I	istin	, т		
² DOBBS 08 estab	lishes $\left \frac{V_{ca}}{V_{ca}} \right $	$\frac{f_{+}^{\pi}(0)}{f_{-}^{K}(0)} = 0.$	$188 \pm$	0.008 ±	± 0.0	02 from 1	the D^+	and D ⁰
decays to $\overline{K} e^+ u_0$ 2.03 \pm 0.14 \pm 0.1	_e and πe ⁺ 08; isospin	$ u_e$. It finds $\Gamma(l)$	$0^{0} \rightarrow$ icts the	$\pi^- e^+$ e ratio is	ν _e)/ s 2.0.	Γ(D ⁺ -	$\rightarrow \pi^0 e^-$	⁺ ν _e) =
$\Gamma(\pi^0 \mu^+ u_\mu) / \Gamma_{ m total}$	I							Г ₃₆ /Г
VALUE (%)	EVTS	DOCUMENT	T ID	TE	CN	COMMEN	Т	
$0.350 \pm 0.011 \pm 0.010$	1.3k	ABLIKIM	1	.8ae BE	S3	e ⁺ e [−] ,	3773 Me	V
$\Gamma(\eta e^+ \nu_e) / \Gamma_{\text{total}}$								Г ₃₇ /Г
VALUE (units 10^{-4})	EVTS	DOCUMENT	T ID	TE	CN	COMMEN	Т	
11.1 ± 0.7 OUR AV	ERAGE					I		
$10.74 \pm 0.81 \pm 0.51$	373	ABLIKIM	1	.8R BE	53	e⊤e_,	3773 Me	v.
11.4 $\pm 0.9 \pm 0.4$	4 h a 6 a 11 a	YELION	1	L CL	EO	e⊤e a	it $\psi(3770)$	0)
• • • we do not use	the followi	ng data for ave	rages, 1	nts, iim	its, e	tc. • • •		
$13.3 \pm 2.0 \pm 0.6$	46	MITCHEL	.L 0	19в CL	EO	See YEL	TON 11	
$\Gamma(\eta \mu^+ \nu_\mu) / \Gamma_{\text{total}}$								Г ₃₈ /Г
VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT	T ID	TE	CN	COMMEN	Т	
$10.41 \pm 1.12 \pm 0.05$	234	¹ ABLIKIM	2	20T BE	S3	e ⁺ e ⁻ ,	3773 Me	V
1 ABLIKIM 20T re	ports (10.4	\pm 1.0 \pm 0.5)	$\times 10^{-4}$	⁴ from	a me	asureme	nt of [Γ($D^+ \rightarrow$
$\eta \mu^+ \nu_\mu) / \Gamma_{\text{total}}]$	\times [B($\eta \rightarrow$	2 $\gamma)$] assuming	$B(\eta \rightarrow$	$2\gamma) =$	(39.4	1 ± 0.20)×10 ⁻²	, which
we rescale to our their experiment's value.	best value s error and	$B(\eta ightarrow 2\gamma) =$ our second error	= (39.3 or is the	6 ± 0.1 system	.8) × iatic	10 ^{—2} .(error fror	Our first n using c	error is our best

Citation: S. Navas et al. (Particle Data Group), Phys. Rev. D ${\bf 110},\,030001$ (2024)

$\Gamma(\pi^{-}\pi^{+}e^{+}\nu_{e})/\Gamma_{\rm tot}$	al					Г ₃₉ /Г
VALUE (units 10^{-3})	EVTS	DOCUMENT	ID	TECN	COMMENT	
2.49 ± 0.11 OUR FIT	Error inclu	des scale fa	ctor of 1.2	2.		
2.449±0.074±0.073	1.7k	ABLIKIM	19 C	BES3	e^+e^- at 3	773 MeV
$\Gamma(f_0(500)^0 e^+ \nu_e, f_0)$	$(500)^0 \rightarrow c$	π ⁺ π ⁻)/Γ	$(\pi^-\pi^+)$	$e^+ \nu_e)$		Г ₄₀ /Г ₃₉
<i>VALUE</i> (units 10 ⁻²)	EVTS	DOCUMENT	ID	TECN	COMMENT	
25.7±1.6±1.1	1.5k	ABLIKIM	19 C	BES3	$\pi^-\pi^+e^+i$	e events
$\Gamma(ho^0 e^+ u_e) / \Gamma_{\text{total}}$						Г ₄₁ /Г
$\frac{VALUE \text{ (units } 10^{-3}\text{)}}{100\pm0.100}$	EVTS	<u>DOCU</u> s scala facto	MENT ID	<u>TE</u>	CN COMME	NT
$2.17 \pm 0.12 + 0.12 - 0.22$	447 ± 25	¹ DOB	BS	13 CL	.EO e ⁺ e ⁻	at $\psi(3770)$
• • • We do not use th	e following c	lata for aver	ages, fits,	, limits, e	etc. • • •	
$2.1 \ \pm 0.4 \ \pm 0.1$	27 ± 6	² HUA	NG	05в CL	EO See DO	OBBS 13
1 DOBBS 13 finds $\Gamma($	$D^0 \rightarrow \rho^- e^-$	$(e^+ \nu_a) / 2$	$(D^+ \rightarrow$	$\rho^0 e^+ \nu$	$(2) = 1.03 \pm$	$0.09^{+0.08}$
isospin invariance pr	, edicts the ra	tio is 1.0.	(,	e,	-0.02
² HUANG 05B finds [$(D^0 \rightarrow \rho)$	$(-e^+\nu_e) / ($	2 F(D ⁺	$\rightarrow \rho^0 e$	$(+\nu_e) = 1.2$	$^{+0.4}_{-0.3} \pm 0.1;$
isospin invariance pr	edicts the ra	tio is 1.0.				
$\Gamma(\rho^0 e^+ \nu_e) / \Gamma(\pi^- \pi^-)$	$(e^+ v_e)$					Г ₄₁ /Г ₃₉
VALUE (units 10^{-2})	EVTS	DOCUMENT	ID	TECN	COMMENT	
76.5±2.3 OUR FIT E	ror includes	scale factor	of 1.2.			
76.0±1.7±1.1	1.5k	ABLIKIM	19 C	BES3	$\pi^-\pi^+e^+i$	e events
$\Gamma(\rho^0 e^+ \nu_e) / \Gamma(\overline{K}^*(8))$	92) ⁰ $e^+ \nu_e$)				Γ ₄₁ /Γ ₂₆
<u>VALUE</u> 0.0353+0.0020 OUR FI	<u>EVIS</u> T Error in	<u>DOCUMENT</u> cludes scale	<u>ID</u> factor of	<u>11</u>	COMMENT	
$0.045 \pm 0.014 \pm 0.009$	49	AITALA	97	E791	π^- nucleus	, 500 GeV
1 AITALA 97 explicitly	subtracts D	$0^+ ightarrow \eta' e^+$	ν_e and of	ther back	grounds to g	et this result.
Г(⁰ _µ ⁺ y_)/Г(<u>К</u> *(8	$(02)^0 u^+ u^-$)				Γαρ/Γρο
· (β μ βμ)/· (· (G VALUE	EVTS	DOCUME	NT ID	TECN	COMMENT	• 42/ • 30
0.045±0.007 OUR AVE	RAGE Erro	or includes s	cale facto	or of 1.1.		
$0.041 \pm 0.006 \pm 0.004$	320 ± 44	LINK	0	6B FOC	5 γ A, \overline{E}_{γ} ?	pprox 180 GeV
$0.051\!\pm\!0.015\!\pm\!0.009$	54	¹ AITALA	9	7 E791	π^- nucle	us, 500 GeV
$0.079 \pm 0.019 \pm 0.013$	39	² FRABE	TTI 9	7 E687	γ Be, ${\it E}_{\gamma}$	\approx 220 GeV
¹ AITALA 97 explicitl	y subtracts	$D^+ \rightarrow \eta'$	$\mu^+ u_\mu$ ai	nd other	background	s to get this
result. ² Recause the reconst	ruction effici	iency for ph	otons is la	w this	FRARETTI)7 result also
includes any $D^+ \rightarrow$	$\eta' \mu^+ \nu_{\mu}$ -	$\rightarrow \gamma \rho^0 \mu^+ \nu$	$_\mu$ events	in the n	umerator.	
$\Gamma(\omega e^+ u_e) / \Gamma_{ m total}$						Г ₄₃ /Г
VALUE (units 10^{-3})	EVTS	DOC	UMENT ID	TECN	COMMENT	
1.69±0.11 OUR AVER4	IGE					
$1.63 \pm 0.11 \pm 0.08$	491 ± 32	2 ABL	$1 \times 10^{\circ}$	W BES3	292 fb ⁻¹ ,	3773 MeV
$1.02 \pm 0.18 \pm 0.07$	129 ± 13	S DOF	5D2 13	CLEO	e'e at v	p(3770)
https://pdg.lbl.gov		Page 18		Creat	ed: 7/25/2	2024 17:21

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

$1.6 \ {+0.7 \atop -0.6} \ \pm 0.1$	$7.6^{+3.3}_{-2.7}$	HUANG	05 B	CLEO	See DOBBS 13
$\Gamma(\omega e^+ \nu_e) / \Gamma(\pi^- \pi)$	-+e+ν _e)				Г ₄₃ /Г ₃₉
VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
$1.28 \pm 0.41 \pm 0.15$	1.5k	ABLIKIM	19 C	BES3	$\pi^-\pi^+e^+\nu_e$ events
$\Gammaig(\omega\mu^+ u_\muig)/\Gamma_{ ext{total}}$					Г ₄₄ /Г
VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID		TECN	COMMENT
$17.7 \pm 2.1 \pm 0.1$	194	¹ ABLIKIM	20н	BES3	e ⁺ e ⁻ , 3773 MeV
¹ ABLIKIM 20H rep $\omega \mu^+ \nu_{\mu})/\Gamma_{total}]$ (89.3 ± 0.6) × 10 (89.2 ± 0.7) × 10 the systematic error	orts (17.7 \pm × [B(ω (782) ⁻² , which we ⁻² . Our first	$1.8 \pm 1.1) \times 10$ $\rightarrow \pi^+ \pi^- \pi^0)$] e rescale to our h error is their exponentiation our heat value	⁻⁴ fro assun best va berime	om a m ning B(o alue B(o nt's erro	easurement of $[\Gamma(D^+ \rightarrow \nu(782) \rightarrow \pi^+ \pi^- \pi^0) = \nu(782) \rightarrow \pi^+ \pi^- \pi^0) = \nu(782) \rightarrow \pi^+ \pi^- \pi^0) =$ or and our second error is
$\Gamma(\eta'(958)e^+\nu_e)/\Gamma$ <u>VALUE (units 10⁻⁴)</u>	total	DOCUMENT I	ID	TECN	Г₄₅/Г
2.0 \pm 0.4 OUR AV	ERAGE				
$1.91 \pm 0.51 \pm 0.13$	32	ABLIKIM	18	R BES	e^+e^- , 3773 MeV
$2.10 \pm 0.53 \pm 0.07$	the following	YELION	11 S fite	. CLE	ψ e^+e^- at $\psi(3770)$
• • • vve do not use	the following o	ata for averages	s, nts,	limits, e	
<3.5	90	MITCHELL	09	B CLE	O See YELTON 11
Γ(a(980) ⁰ e ⁺ ν _e , a	$(980)^0 \rightarrow \eta$	$\pi^{0})/\Gamma_{total}$			Г ₄₆ /Г
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
$1.66^{+0.81}_{-0.66}{\pm}0.11$	10^{+5}_{-4}	¹ ABLIKIM	18F	BES3	e^+e^- at 3773 MeV
1 Signal observed at	2.9 σ C.L.				
$\Gamma(b_1(1235)^0 e^+ \nu_{e_1})$	$b_{1}^{0} \rightarrow \omega \pi^{0}$)/Г			Γ47/Γ
VALUE		DOCUMENT ID		TECN	COMMENT
<1.75 × 10 ⁻⁴	90	ABLIKIM	20AF	BES3	e ⁺ e ⁻ , 3773 MeV
					F /F
$(\phi e' \nu_e)/ _{total}$	odes of the ϕ	are included			I 48/I
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<1.3 × 10 ⁻⁵	90	ABLIKIM	15W	BES3	292 fb ⁻¹ , 3773 MeV
• • • We do not use	the following o	data for averages	s, fits,	limits, e	etc. • • •
$< 0.9 \times 10^{-4}$	90	YELTON	11	CLEO	e^+e^- at $\psi(3770)$
$< 1.6 \times 10^{-4}$	90	MITCHELL	09 B	CLEO	See YELTON 11
<0.0201	90	ABLIKIM	06 P	BES2	e^+e^- at 3773 MeV
<0.0209	90	BAI	91	MRK3	e^+e^-pprox 3.77 GeV
$\Gamma(D^0 e^+ u_e) / \Gamma_{ ext{total}}$					Г ₄₉ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<1.0 × 10 ⁻⁴	90	ABLIKIM	17AD	BES3	e^+e^- at 3.773 GeV
https://pdg.lbl.gov	,	Page 19		Creat	ed: 7/25/2024 17:21

	— Hadronic	modes with	a K or T	ĸĸĸ	<u> </u>	
$\Gamma(K_S^0\pi^+)/\Gamma_{total}$						Г ₅₀ /Г
VALUE (units 10^{-2})	EVTS	DOCUMENT ID	<u>, 7</u>	FECN	COMMENT	
1.562±0.031 OUR	FIT Error inc	ludes scale facto	or of 1.7.			
$1.591 \pm 0.006 \pm 0.030$	0 94k	ABLIKIM	18W E	BES3	e ⁺ e ⁻ , 3773	MeV
• • • We do not us	e the following	data for averag	es, fits, lii	mits, e	etc. ● ● ●	
$1.526 \pm 0.022 \pm 0.038$	3	¹ DOBBS	07 C	CLEO	See MENDE	Z 10
$1.55 \pm 0.05 \pm 0.06$	2.2k	* HE	05 C	LEO	See DOBBS	07
$1.6 \pm 0.3 \pm 0.1$	161	ADLER	88C N	ИККЗ	e⊤e¯ 3.77 (JeV
¹ DOBBS 07 and supersedes HE 0	HE 05 use sing 95.	le- and double-ta	agged eve	ents in	an overall fit.	DOBBS 07
$\Gamma(K_S^0\pi^+)/\Gamma(K^-$	⁻ 2π ⁺)					Γ_{50}/Γ_{52}
VALUE	EVTS	DOCUMENT ID	TEC	<u>CN (</u>	COMMENT	
0.167 ± 0.004 OU	RFIT Errori DAVEDACE	ncludes scale fac	ctor of 2.4	4.	E	
$0.102 \pm 0.009 \ 0.001 \pm 0.002 \pm 0.001 \ 0.001 \pm 0.002 \ \pm 0.001 \ 0.$				FO 4.	o. NIL CLEO o rur	
$0.171 \pm 0.002 \pm 0.0$	002 0016 10 6k				\overline{F}	~ 180 CaV
• • • We do not us	e the following	data for averag	es fits li	mits e	γ fucieus, Σ_{γ}	5 100 Gev
$0.1692 \pm 0.0012 \pm 0.0012$			10 CI			11 14
$0.1082 \pm 0.0012 \pm 0.0012$	JUSI SUK		10 CL	EO a	$rac{1}{2}$	() 14 S)
$0.174 \pm 0.012 \pm 0.0$	211 + 473		97 CL	01 E	$e^{-}e^{-} \approx 7(4)$	<i>5)</i>
		ANJOS D^+		91 1		/11
- See BISHAI 97 1	or an isospin a	nalysis of D^+ –	$\rightarrow \kappa \pi$ and	npiituc	les.	
$\Gamma(K_L^0\pi^+)/\Gamma_{\text{total}}$						Г ₅₁ /Г
VALUE (units 10^{-2})	EVTS	DOCUMEI	NT ID	TECN	COMMENT	
$1.460 \pm 0.040 \pm 0.03$	5 2023 ± 54	¹ HE	08	CLE	O e^+e^- at	ψ (3770)
1 The difference o	f CLEO D^+ –	$\rightarrow K^0_{S} \pi^+$ and	$\kappa^0_I \pi^+$ br	ranchir	ng fractions ov	er the sum
(DOBBS 07 and	I HE 08) is +0	.022 \pm 0.016 \pm	0.018.			
$\Gamma(K^- 2\pi^+)/\Gamma_{tota}$	al					Г ₅₂ /Г
VALUE (units 10^{-2})	EVTS	DOCUMENT ID	, т	TECN	COMMENT	
9.38 ±0.16 OUR	FIT Error inc	ludes scale facto	or of 1.6.			
$9.224 \pm 0.059 \pm 0.15$	7	BONVICINI	14 C	CLEO	All CLEO-c r	uns
• • • We do not us	e the following	data for averag	es, fits, lii	mits, e	etc. ● ● ●	
$9.14\ \pm 0.10\ \pm 0.17$		¹ DOBBS	07 C	CLEO	See BONVIC	INI 14
$9.5 \pm 0.2 \pm 0.3$	15.1k	¹ HE	05 C	CLEO	See DOBBS	07
$9.3 \pm 0.6 \pm 0.8$	1502	² BALEST	94 C	CLEO	$e^+e^-pprox \Upsilon(e^+)$	4 <i>S</i>)
$6.4 \begin{array}{c} +1.5 \\ -1.4 \end{array}$		³ BARLAG	92c A	АССМ	π^- Cu 230 C	GeV
$9.1 \pm 1.3 \pm 0.4$	1164	ADLER	88C N	/IRK3	e^+e^- 3.77 (GeV
9.1 ± 1.9	239	⁴ SCHINDLER	81 N	/IRK2	e^+e^- 3.771	GeV
1 DOBBS 07 and	HE 05 use sing	le- and double-ta	agged eve	ents in	an overall fit.	DOBBS 07
_supersedes HE 0	5.				0	
² BALEST 94 me	asures the ration	$f of D^+ \to K^-$	$\pi^{+}\pi^{+}$	and <i>L</i>	$V^0 \rightarrow K^- \pi^+$	branching
fractions to be 2	$2.35 \pm 0.16 \pm$	0.16 and uses t	heir absol	ute m	easurement of	the $D^{U} \rightarrow$
$K \pi^{\top}$ traction	(AKERIB 93).	anching fractice	by topole	orical	normalization	
⁴ SCHINDI FR 81	$(MARK_2)$ me	anching fraction pasures $\sigma(a^+a^-)$	$\rightarrow q/(37)$	ogicai 7011 ⊾	hormalization.	action to be
	λ/a was the M		$\varphi(3)$			

0.38 \pm 0.05 nb. We use the MARK-3 (ADLER 88C) value of σ = 4.2 \pm 0.6 \pm 0.3 nb.

See the related review(s):

Review of Multibody Charm Analyses

$\Gamma((K^-\pi^+)_{S-wave}\pi^+)/\Gamma($	$K^{-}2\pi^{+})$				Γ ₅₃ /Γ ₅₂
This is the "fit fraction"	from the Dalitz	-plot a	analys	sis. The	$K^-\pi^+$ S-wave includes
a broad scalar $\kappa~(\overline{K}^*_0($ 700)), the $\overline{K}_{0}^{*}(143)$	0) ⁰ , ar	nd no	n-resona	ant background.
VALUE	DOCUMEN	T ID		TECN	COMMENT
0.801 ± 0.012 OUR AVERAG	E 1				
$0.8024 \pm 0.0138 \pm 0.0043$	¹ LINK		09	FOCS	MIPWA fit, 53k evts
0.838 ±0.038	² BONVICI	NI	08A	CLEO	QMIPWA fit, 141k evts
$0.786 \pm 0.014 \pm 0.018$	AIIALA		06	E791	Dalitz fit, 15.1k events
• • • We do not use the follow	ing data for ave	erages,	fits,	limits, e	etc. ● ● ●
$0.8323 \pm 0.0150 \pm 0.0008$	³ LINK		07 B	FOCS	See LINK 09
1 This LINK 09 model-indepe	endent partial-w	ave ana	alysis	of the	$K^-\pi^+$ <i>S</i> -wave slices the
$K^{-}\pi^{+}$ mass range into 39	bins.				
² The BONVICINI 08A QMIF	PWA (quasi-mod	del-inde	epenc	lent par	tial-wave analysis) of the
$K^-\pi^+$ S-wave amplitude	slices the $K^- \eta$	τ^+ ma	ass ra	inge int	o 26 bins but keeps the
Breit-Wigner $\overline{K}_0^*(1430)^0$.					
³ This LINK 07B fit uses a K	matrix. The K	$-\pi^{+}$	S-wav	ve fit fra	action given above breaks
down into (207.3 \pm 25.5 \pm	12.4)% isospin-	1/2 an	id (40	$0.5 \pm 9.$	6 ± 3.2)% isospin-3/2 —
with large interference betw	een the two. T	he isos	pin-1	/2 com	ponent includes the κ (or
$K_0^*(700)^0$) and $K_0^*(1430)^0$					
$\Gamma(\overline{V}*(700)) = + \overline{V}* + V=$	=_+)/r(<i>v</i> =	n_+)			F /F
I $(\Lambda_0(700)^\circ \pi^+, \Lambda_0^\circ \rightarrow \Lambda)$	π')/I(Λ 4	2π ')	nalvci	6	¹ 54/152
		-рюсаі <i>т і</i> л	naiysi	S. TECN	COMMENT
• • • We do not use the follow	ving data for ave	erages	fits	limits e	
		l'ages,	00	E701	
$0.478 \pm 0.121 \pm 0.053$	AITALA		02	E791	See AITALA 06
$\Gamma(\overline{K}^{*}(1430)^{0}\pi^{+},\overline{K}^{*}(1430)^{0}\pi^{+})$	$0^{0} \rightarrow K^{-}\pi^{+}$)/Г(<i>М</i>	(⁻ 2	$\pi^+)$	
This is the "fit fraction"	from the Dalitz	-plot ai	nalysi	s.	• 55/ • 52
VALUE	DOCUMEN	T ID		TECN	COMMENT
0.1330 ± 0.0062	BONVICI	NI	08A	CLEO	QMIPWA fit, 141k evts
\bullet \bullet We do not use the follow	ving data for ave	erages,	fits,	limits, e	etc. • • •
$0.125 \pm 0.014 \pm 0.005$	AITALA	(02	E791	See AITALA 06
$0.284\ \pm 0.022\ \pm 0.059$	FRABET	TI 9	94G	E687	Dalitz fit, 8800 evts
$0.248\ \pm 0.019\ \pm 0.017$	ANJOS	9	93	E691	$\gamma\mathrm{Be}$ 90–260 GeV
		_/	- 1		_ /_
$I(K^{*}(892)^{\circ}\pi^{+}, K^{*}(892)^{\circ}$	$\rightarrow K^{-}\pi^{+})/l$	I (K-	$2\pi^+$)	₅₆ / ₅₂
I his is the "fit fraction"	from the Dalitz	-plot ai	nalysi	IS.	
$\frac{VALUE}{0.111 + 0.012} OUR AVFRAG$	E Error include		e fact	$rac{COM}{}$	7
$0.1236 \pm 0.0034 \pm 0.0034$			FOC	S MIP	VA fit 53k evts
$0.0988 \pm 0.0034 \pm 0.0034$	BONVICINI	084			PWA fit 141k evts
0.119 + 0.002 + 0.020	AITALA	06	E791	Dalit	z fit. 15.1k events
• • • We do not use the follow	ving data for ave	erages.	fits.	limits. e	etc. • • •
$0.1361 \pm 0.0041 \pm 0.0030$ 1	LINK	070	FOCS	5 500	
$0.1301 \pm 0.0041 \pm 0.0030$		075	F701	Soo	
$0.125 \pm 0.010 \pm 0.009$ 0.137 $\pm 0.006 \pm 0.009$	FRARETTI	94C	E 687	Dalit	7 fit 8800 evts
0.170 + 0.009 + 0.034	ANIOS	93	E601	∼ R≏	90–260 GeV
	,	55	_051	, De	30 200 000
https://pdg.lbl.gov	Page 21			Creat	ed: 7/25/2024 17:21

0.14	± 0.04	± 0.04	ALVAREZ	91 B	NA14	Photoproduction
0.13	± 0.01	± 0.07	ADLER	87	MRK3	e^+e^- 3.77 GeV
-1						

 1 The statistical error on this LINK 07B value is corrected in LINK 09.

 $\Gamma(\overline{K}^*(1680)^0\pi^+,\overline{K}^*(1680)^0\rightarrow K^-\pi^+)/\Gamma(K^-2\pi^+)$ Γ_{59}/Γ_{52} This is the "fit fraction" from the Dalitz-plot analysis. <u>VALUE (units 10^{-2})</u> COMMENT DOCUMENT ID TECN 0.23 ±0.12 OUR AVERAGE FOCS MIPWA fit, 53k evts $1.75 \pm 0.62 \pm 0.54$ LINK 09 0.196 ± 0.118 BONVICINI 08A CLEO QMIPWA fit, 141k evts 06 E791 $1.2 \pm 0.6 \pm 1.2$ AITALA Dalitz fit, 15.1k events • • We do not use the following data for averages, fits, limits, etc. • • • $1.90 \ \pm 0.63 \ \pm 0.43$ 07B FOCS See LINK 09 LINK 02 2.5 ± 0.7 ± 0.3 AITALA E791 See AITALA 06 4.7 $\pm 0.6 \pm 0.7$ FRABETTI 94G E687 Dalitz fit, 8800 evts $\pm 0.4 \pm 1.3$ ANJOS 93 γ Be 90–260 GeV 3.0 E691 $\Gamma(K^{-}(2\pi^{+})_{I=2})/\Gamma(K^{-}2\pi^{+})$ Γ_{60}/Γ_{52} VALUE DOCUMENT ID TECN COMMENT 0.155 ± 0.028 BONVICINI 08A CLEO QMIPWA fit. 141k evts $\Gamma(K^- 2\pi^+ \text{ nonresonant}) / \Gamma(K^- 2\pi^+)$ Γ_{61}/Γ_{52} This is the "fit fraction" from the Dalitz-plot analysis. Later analyses find little need for this decay mode. VALUE DOCUMENT ID <u>TECN</u> <u>COMMENT</u> • • We do not use the following data for averages, fits, limits, etc. • • • $0.130 \pm 0.058 \pm 0.044$ AITALA 02 E791 See AITALA 06 Dalitz fit, 8800 evts $0.998 \pm 0.037 \pm 0.072$ FRABETTI 94G E687 $0.838 \pm 0.088 \pm 0.275$ 93 E691 γ Be 90–260 GeV ANJOS $0.79 \pm 0.07 \pm 0.15$ ADLER 87 MRK3 e^+e^- 3.77 GeV $\Gamma(K_{\rm S}^0\pi^+\pi^0)/\Gamma_{\rm total}$ Γ_{62}/Γ VALUE (units 10^{-2}) EVTS DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ DOBBS $6.99 \pm 0.09 \pm 0.25$ 07 CLEO See BONVICINI 14 ¹ HE $7.2 \pm 0.2 \pm 0.4$ 5.1k 05 CLEO See DOBBS 07 88C MRK3 e^+e^- 3.77 GeV $5.1 \pm 1.3 \pm 0.8$ 159 ADLER ¹DOBBS 07 and HE 05 use single- and double-tagged events in an overall fit. DOBBS 07 supersedes HE 05. $\Gamma(K_S^0\pi^+\pi^0)/\Gamma(K^-2\pi^+)$ Γ_{62}/Γ_{52} VALUE DOCUMENT ID TECN COMMENT $0.785 \pm 0.007 \pm 0.016$ BONVICINI 14 CLEO All CLEO-c runs $\frac{\Gamma(K_{S}^{0}\rho^{+})}{\Gamma(K_{S}^{0}\pi^{+}\pi^{0})}$ This is the "fit fraction" from the Dalitz-plot analysis. Γ_{63}/Γ_{62} VALUE (units 10^{-2} DOCUMENT ID TECN COMMENT $83.4 \pm 2.2 + 7.1 - 3.6$ ¹ ABLIKIM 14E BES3 e^+e^- at $\psi(3770)$ ¹ Fit fraction from Dalitz plot analysis of 142k $D^+ \rightarrow K^0_S \pi^+ \pi^0$ events. $\Gamma(K^0_{S}\rho(1450)^+, \rho^+ \rightarrow \pi^+\pi^0)/\Gamma(K^0_{S}\pi^+\pi^0)$ This is the "fit fraction" from the Dalitz-plot analysis. Γ_{64}/Γ_{62} VALUE (%) DOCUMENT ID TECN COMMENT $2.1\pm0.3^{+1.6}_{-1.0}$ 14E BES3 e^+e^- at $\psi(3770)$ ABLIKIM https://pdg.lbl.gov Page 23 Created: 7/25/2024 17:21 Citation: S. Navas et al. (Particle Data Group), Phys. Rev. D ${\bf 110},\,030001$ (2024)

$\Gamma(\overline{K}^*(892)^0\pi^+,\overline{K}^*)$	(002) /	m the Dalitz-nlo	t analve	212	
VALUE (units 10^{-2})		DOCUMENT IL)	TECN	COMMENT
$3.58 \pm 0.17 \substack{+0.39 \\ -0.38}$		¹ ABLIKIM	14E	BES3	e^+e^- at ψ (3770)
¹ Fit fraction from D	alitz plot a	nalysis of 142k <i>I</i>	$O^+ \rightarrow$	$\kappa^0_S \pi^+$	π^0 events.
$\overline{(K_0^*(1430)^0\pi^+, K_0^*)}$	$\overline{f_0^{*0}} \rightarrow K_3^0$	σ⁰)/Γ(K⁰_Sπ ⁼ m the Dalitz-plo	+ π⁰) ot analys	sis.	Γ ₆₆ /Γ ₆₂
/ALUE (%) 7 + 0 6 + 1 1		<u>DOCUMENT IL</u>	145	TECN	$\frac{COMMENT}{a^+ a^-} \rightarrow \psi(2770)$
$\Gamma(\overline{K}_{0}^{*}(1680)^{0}\pi^{+}, \overline{K}_{0}$ This is the "fit fr	$\overline{f_0^{*0}} \rightarrow K_S^0$	$(5\pi^0)/\Gamma(K_S^0\pi^-)$ m the Dalitz-plo	^{+} π ⁰) ot analys	sis.	Γ ₆₇ /Γ ₆₂
$1.3 \pm 0.2 + 0.9$		ABLIKIM	14E	BES3	e^+e^- at $\psi(3770)$
$\Gamma(\overline{\kappa}^0\pi^+, \overline{\kappa}^0 \to K^0_S)$ This is the "fit fr	π⁰)/Γ(K action" fro	${}^{0}_{S}\pi^{+}\pi^{0}$) om the Dalitz-plo	ot analys	sis.	Г <u>68</u> /Г <u>62</u>
771 0+6.5			, <u> </u>	BES3	e^+e^- at $\psi(3770)$
-1 ^{±1.2} -4.8		ADEIKIM			, ()
$\Gamma(K_S^0 \pi^+ \pi^0 \text{ nonreso})$ This is the "fit fr	mant)/Γ (action" fro	$(K_S^0 \pi^+ \pi^0)$ om the Dalitz-plo	ot analys	sis.	Γ ₆₉ /Γ ₆₂
$ \frac{\mathcal{K}_{S}^{0} \pi^{+} \pi^{0} \text{ nonreso}}{\text{This is the "fit fr}} $	mant)/Γ (action" fro	(K⁰_Sπ⁺π⁰) m the Dalitz-plo <u>DOCUMENT IE</u>	ot analys	sis. <u>TECN</u>	Г ₆₉ /Г ₆₂
$\mathcal{K}_{S}^{0}\pi^{+}\pi^{0}$ nonreso This is the "fit fr <i>ALUE</i> (units 10 ⁻²) $\mathcal{K}_{-5.1}^{0}$	onant)/Γ(action" fro	(K⁰_Sπ⁺π⁰) m the Dalitz-plo <u>DOCUMENT IL</u> ¹ ABLIKIM	t analys) 14E	sis. <u>TECN</u> BES3	Γ_{69}/Γ_{62} <u>COMMENT</u> $e^+ e^-$ at $\psi(3770)$
$F(K_{5}^{0}\pi^{+}\pi^{0} \text{ nonreso})$ This is the "fit fr <i>(ALUE</i> (units 10 ⁻²)) 4.6±0.7+5.4 ¹ Fit fraction from Data	onant)/Γ(action" fro 	(K⁰_Sπ⁺π⁰) m the Dalitz-plo <u>DOCUMENT IL</u> ¹ ABLIKIM nalysis of 142k L	t analys t = 14E $D^+ \rightarrow t$	sis. TECN BES3 $K^0_S \pi^+$	Γ_{69}/Γ_{62} <u>COMMENT</u> e^+e^- at ψ(3770) π^0 events.
$\Gamma(K_{S}^{0}\pi^{+}\pi^{0} \text{ nonreso})$ This is the "fit fr <u>VALUE (units 10⁻²)</u> 1.6±0.7+5.4 ¹ Fit fraction from Data $\Gamma(K_{S}^{0}\pi^{+}\pi^{0} \text{ nonreso})$ This is the "fit fr (MUE (9))	action" fro alitz plot at nant and action" fro	$(K_{g}^{0}\pi^{+}\pi^{0})$ im the Dalitz-plo <u>DOCUMENT IE</u> ¹ ABLIKIM nalysis of 142k <i>I</i> $\overline{\kappa}^{0}\pi^{+})/\Gamma(K_{g}^{0})$ im the Dalitz-plo	$14E$ $3^{+} \rightarrow$ $3^{+} \pi^{0}$ of analysis	sis. $\frac{TECN}{BES3}$ $K_{S}^{0}\pi^{+}$ bis.	Γ_{69}/Γ_{62} $\frac{COMMENT}{e^+e^- \text{ at } \psi(3770)}$ $\pi^0 \text{ events.}$ Γ_{70}/Γ_{62}
$F(K_{S}^{0}\pi^{+}\pi^{0} \text{ nonreso})$ This is the "fit fr <u>(ALUE (units 10⁻²)</u>) 1.6±0.7+5.4 ¹ Fit fraction from Data 1 Fit fraction fraction from Data 1 Fit fraction fr	action" fro alitz plot a nant and action" fro	$(K_{S}^{0}\pi^{+}\pi^{0})$ m the Dalitz-plo <u>DOCUMENT IL</u> ¹ ABLIKIM nalysis of 142k L $\overline{\kappa}^{0}\pi^{+})/\Gamma(K_{S}^{0})$ m the Dalitz-plo <u>DOCUMENT IL</u> ABLIKIM	$14E$ $D^+ \rightarrow \frac{\pi^+ \pi^0}{\pi^+ \pi^0}$ $14E$ $14E$	sis. $\frac{TECN}{BES3}$ $K_{S}^{0}\pi^{+}$) sis. $\frac{TECN}{BES3}$	Γ_{69}/Γ_{62} $\frac{COMMENT}{e^+e^- \text{ at } \psi(3770)}$ $\pi^0 \text{ events.}$ Γ_{70}/Γ_{62} $\frac{COMMENT}{e^+e^- \text{ at } \psi(3770)}$
$\Gamma(K_{S}^{0}\pi^{+}\pi^{0} \text{ nonresc})$ This is the "fit fr <u>VALUE (units 10⁻²)</u> 4.6±0.7+5.4 ¹ Fit fraction from Da $\Gamma(K_{S}^{0}\pi^{+}\pi^{0} \text{ nonreso})$ This is the "fit fr <u>VALUE (%)</u> 18.6±1.7+2.3 $\Gamma((K_{S}^{0}\pi^{0})_{S-\text{wave}}\pi^{-1})$ The numerator h nant contribution	alitz plot and mant and mant and faction" fro h)/r(Kg ere is the const.	$(K_{S}^{0}\pi^{+}\pi^{0})$ im the Dalitz-plo <u>DOCUMENT IE</u> ¹ ABLIKIM nalysis of 142k <i>L</i> $\overline{\kappa}^{0}\pi^{+})/\Gamma(K_{S}^{0})$ im the Dalitz-plo <u>DOCUMENT IE</u> ABLIKIM $\pi^{+}\pi^{0})$ coherent sum of	$14E$ $2^{+} \rightarrow \frac{\pi^{+} \pi^{0}}{\pi^{+} \pi^{0}}$ $14E$ $14E$ $14E$ $14E$	sis. $\frac{TECN}{BES3}$ $K_{S}^{0}\pi^{+}$) sis. $\frac{TECN}{BES3}$ $(1430)^{0}$	Γ_{69}/Γ_{62} $\frac{COMMENT}{e^+ e^- \text{ at } \psi(3770)}$ $\pi^0 \text{ events.}$ Γ_{70}/Γ_{62} $\frac{COMMENT}{e^+ e^- \text{ at } \psi(3770)}$ Γ_{71}/Γ_{62} $\pi^+, \overline{\kappa}^0 \pi^+, \text{ and nonreso-}$
$\Gamma(K_{S}^{0}\pi^{+}\pi^{0} \text{ nonreso})$ This is the "fit fr <i>(ALUE</i> (units 10 ⁻²) A.6±0.7+5.4 ¹ Fit fraction from Data $\Gamma(K_{S}^{0}\pi^{+}\pi^{0} \text{ nonreso})$ This is the "fit fr <i>(ALUE</i> (%) A.6±1.7+2.3 $\Gamma((K_{S}^{0}\pi^{0})_{S-\text{wave}}\pi^{-})$ The numerator h nant contribution <i>(ALUE</i> (%)	pnant)/Γ(raction" fro alitz plot al nant and action" fro +)/Γ(K ⁰ _S) ere is the cost is.	$(K_{g}^{0}\pi^{+}\pi^{0})$ m the Dalitz-plo <u>DOCUMENT IL</u> ¹ ABLIKIM nalysis of 142k L $\overline{\kappa}^{0}\pi^{+})/\Gamma(K_{g}^{0}$ m the Dalitz-plo <u>DOCUMENT IL</u> ABLIKIM $\pi^{+}\pi^{0}$) coherent sum of <u>DOCUMENT IL</u>	$\frac{1}{2}$ $\frac{1}$	sis. $\frac{TECN}{BES3}$ $K_{S}^{0} \pi^{+}$) sis. $\frac{TECN}{BES3}$ $(1430)^{0}$ $\frac{TECN}{TECN}$	Γ_{69}/Γ_{62} $\frac{COMMENT}{e^+ e^- \text{ at } \psi(3770)}$ $\pi^0 \text{ events.}$ Γ_{70}/Γ_{62} $\frac{COMMENT}{e^+ e^- \text{ at } \psi(3770)}$ Γ_{71}/Γ_{62} $\pi^+, \overline{\kappa}^0 \pi^+, \text{ and nonreso-}$ $\frac{COMMENT}{COMMENT}$
$F(K_{S}^{0}\pi^{+}\pi^{0} \text{ nonreso})$ This is the "fit fr <i>(ALUE</i> (units 10 ⁻²) A.6±0.7+5.4 ¹ Fit fraction from Da F (K_{S}^{0}\pi^{+}\pi^{0} \text{ nonreso}) This is the "fit fr <i>(ALUE</i> (%) A.6±1.7+2.3 F ((K_{S}^{0}\pi^{0})_{S-\text{wave}}\pi^{-1}) The numerator h nant contribution <i>(ALUE</i> (%) A.6±1.4+3.4 -4.3	nant)/Γ (fraction" fro alitz plot al nant and action" fro +)/Γ(K § ere is the cost is.	($\kappa_{g}^{0}\pi^{+}\pi^{0}$) im the Dalitz-plo <u>DOCUMENT IE</u> ¹ ABLIKIM nalysis of 142k <i>L</i> $\overline{\kappa}^{0}\pi^{+}$)/ $\Gamma(\kappa_{g}^{0}$ im the Dalitz-plo <u>DOCUMENT IE</u> ABLIKIM $\pi^{+}\pi^{0}$) coherent sum of <u>DOCUMENT IE</u> ABLIKIM	$14E$ $D^{+} \rightarrow \frac{\pi^{+} \pi^{0}}{\pi^{+} \pi^{0}}$ $14E$ $14E$ $14E$ $14E$ $14E$	sis. $\frac{TECN}{BES3}$ $K_{S}^{0}\pi^{+}$) sis. $\frac{TECN}{BES3}$ (1430) ⁰ $\frac{TECN}{BES3}$	Γ_{69}/Γ_{62} $\frac{COMMENT}{e^+e^- \text{ at } \psi(3770)}$ $\pi^0 \text{ events.}$ Γ_{70}/Γ_{62} $\frac{COMMENT}{e^+e^- \text{ at } \psi(3770)}$ Γ_{71}/Γ_{62} $\pi^+, \overline{\kappa}^0 \pi^+, \text{ and nonreso-}$ $\frac{COMMENT}{e^+e^- \text{ at } \psi(3770)}$
$\Gamma(\kappa_{S}^{0}\pi^{+}\pi^{0} \text{ nonresc}_{\text{This is the "fit fr}}$ $\frac{\Lambda LUE (\text{units } 10^{-2})}{\Lambda 6 \pm 0.7 + 5.4}$ $\frac{1}{4.6 \pm 0.7 + 5.4}$ $\frac{1}{5.1}$ $\frac{1}{5.1}$ Fit fraction from Data from This is the "fit fr} $\frac{\Lambda LUE (\%)}{\Lambda 18.6 \pm 1.7 + 2.3}$ $\Gamma((\kappa_{S}^{0}\pi^{0})_{S-\text{wave}}\pi^{-1})$ The numerator h nant contribution $\Lambda LUE (\%)$ $\frac{17.3 \pm 1.4 + 3.4}{-4.3}$ $\Gamma(\kappa_{S}^{0}\pi^{+}\omega)/\Gamma_{\text{total}}$	alitz plot and action" fro alitz plot and action" fro +)/Г(K°s ere is the co is.	$(K_{g}^{0}\pi^{+}\pi^{0})$ im the Dalitz-plo <u>DOCUMENT IE</u> ¹ ABLIKIM nalysis of 142k <i>L</i> $\overline{\kappa}^{0}\pi^{+})/\Gamma(K_{g}^{0})$ im the Dalitz-plo <u>DOCUMENT IE</u> ABLIKIM $\pi^{+}\pi^{0})$ coherent sum of <u>DOCUMENT IE</u> ABLIKIM	$14E$ $2^{+} \rightarrow 3$ $3\pi + \pi^{0}$ $14E$ $14E$ $14E$ $14E$ $14E$	sis. $\frac{TECN}{BES3}$ $K_{S}^{0}\pi^{+}$) sis. $\frac{TECN}{BES3}$ (1430) ⁰ $\frac{TECN}{BES3}$	Γ_{69}/Γ_{62} $\frac{COMMENT}{e^+ e^- \text{ at } \psi(3770)}$ $\pi^0 \text{ events.}$ Γ_{70}/Γ_{62} $\frac{COMMENT}{e^+ e^- \text{ at } \psi(3770)}$ Γ_{71}/Γ_{62} $\pi^+, \overline{\kappa}^0 \pi^+, \text{ and nonreso-}$ $\frac{COMMENT}{e^+ e^- \text{ at } \psi(3770)}$ Γ_{72}/Γ
$\Gamma(\kappa_{S}^{0}\pi^{+}\pi^{0} \text{ nonresc})$ This is the "fit fr <i>VALUE</i> (units 10 ⁻²) 4.6±0.7+5.4 ¹ Fit fraction from Da $\Gamma(\kappa_{S}^{0}\pi^{+}\pi^{0} \text{ nonreso})$ This is the "fit fr <i>VALUE</i> (%) 18.6±1.7+2.3 $\Gamma((\kappa_{S}^{0}\pi^{0})_{S-\text{wave}}\pi^{-})$ The numerator h nant contribution <i>VALUE</i> (%) 17.3±1.4+3.4 $\Gamma(\kappa_{S}^{0}\pi^{+}\omega)/\Gamma_{\text{total}})$ <i>VALUE</i> (units 10 ⁻²)	chant)/Γ (fraction" fro alitz plot and nant and action" fro +)/Γ(K § ere is the cost is. <u>EVTS</u>	$(K_{g} \pi^{+} \pi^{0})$ m the Dalitz-plo <u>DOCUMENT IE</u> ¹ ABLIKIM nalysis of 142k <i>L</i> $\overline{\kappa}^{0} \pi^{+})/\Gamma(K_{g}^{0})$ m the Dalitz-plo <u>DOCUMENT IE</u> ABLIKIM $\pi^{+} \pi^{0}$ coherent sum of <u>DOCUMENT IE</u> ABLIKIM	$14E$ $D^{+} \rightarrow \frac{\pi^{+} \pi^{0}}{\pi^{+} \pi^{0}}$ $14E$ $14E$ $14E$ $14E$ $14E$ $14E$	sis. $\frac{TECN}{BES3}$ $K_{S}^{0}\pi^{+}$) sis. $\frac{TECN}{BES3}$ (1430) ⁰ $\frac{TECN}{BES3}$ BES3	Γ_{69}/Γ_{62} $\frac{COMMENT}{e^+e^- \text{ at } \psi(3770)}$ $\pi^0 \text{ events.}$ Γ_{70}/Γ_{62} $\frac{COMMENT}{e^+e^- \text{ at } \psi(3770)}$ Γ_{71}/Γ_{62} $\pi^+, \overline{\kappa}^0 \pi^+, \text{ and nonreso-}$ $\frac{COMMENT}{e^+e^- \text{ at } \psi(3770)}$ Γ_{72}/Γ $\frac{COMMENT}{e^+e^- \text{ at } \psi(3770)}$

https://pdg.lbl.gov

$\Gamma(\kappa_{S}^{0}\pi^{+}\eta)/\Gamma_{\text{total}}$					Г ₇₃ /Г
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
$13.09 \pm 0.37 \pm 0.31$	1.3k	ABLIKIM	20V	BES3	e ⁺ e ⁻ , 3773 MeV
$\Gamma(\kappa_S^0 \pi^+ \eta'(958))/I$	total				Г ₇₄ /Г
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
1.90±0.17±0.13	267	ABLIKIM	18AC	BES3	e ⁺ e ⁻ , 3773 MeV
$\Gamma(K^{-}2\pi^{+}\pi^{0})/\Gamma_{tot}$ See the listings (Physics Letters	al under " <i>D</i> B667 1 (2	$\rightarrow K\pi\pi\pi$ partia (008)) for measurer	l wave nents	e analyse of subm	Γ₇₅/Γ es" and our 2008 Review odes of this mode.
VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not use t	he followir	ng data for average	s, fits,	limits, e	etc. • • •
$5.98\!\pm\!0.08\!\pm\!0.16$		¹ DOBBS	07	CLEO	See BONVICINI 14
$6.0 \pm 0.2 \pm 0.2$	4.8k	¹ HE	05	CLEO	See DOBBS 07
$5.8 \pm 1.2 \pm 1.2$	142	COFFMAN	92 B	MRK3	e ⁺ e ⁻ 3.77 GeV
$6.3 \ \begin{array}{c} +1.4 \\ -1.3 \end{array} \pm 1.2$	175	BALTRUSAIT	86E	MRK3	See COFFMAN 92B
¹ DOBBS 07 and HE supersedes HE 05.	05 use sir	ngle- and double-tag	gged e	vents in	an overall fit. DOBBS 07
$\Gamma(\kappa^{-}2\pi^{+}\pi^{0})/\Gamma(\kappa)$	$(-2\pi^+)$				Γ ₇₅ /Γ ₅₂
VALUE		DOCUMENT ID		TECN	COMMENT
0.666±0.006±0.014		BONVICINI	14	CLEO	All CLEO-c runs
(<i>NS2</i> , <i>N</i>)/ tot See the listings (Physics Letters <i>VALUE</i> (units 10 ⁻²)	al under " <i>D</i> B667 1 (2	$\rightarrow K\pi\pi\pi$ partia (008)) for measurer <u>DOCUMENT ID</u>	l wave nents	e analyse of subm <u>TECN</u>	es" and our 2008 Review odes of this mode.
• • • We do not use t	he followir	ng data for average	s, fits,	limits, e	etc. • • •
$\begin{array}{c} 3.122 \pm 0.046 \pm 0.096 \\ 3.2 \pm 0.1 \pm 0.2 \end{array}$	3.2k	¹ DOBBS ¹ HE	07 05	CLEO CLEO	See BONVICINI 14 See DOBBS 07
$2.1 \begin{array}{c} +1.0 \\ -0.9 \end{array}$		² BARLAG	9 2C	ACCM	π^- Cu 230 GeV
$3.3 \pm 0.8 \pm 0.2$	168	ADLER	88C	MRK3	e^+e^- 3.77 GeV
¹ DOBBS 07 and HE supersedes HE 05. ² BARLAG 92C comp	05 use sir	ngle- and double-tag	gged e	vents in ological	an overall fit. DOBBS 07 normalization.
$\Gamma(u(0 \circ \pm -))/\Gamma(u)$	(- a +)	5	5 - 1		F /F
$I(K_{S}^{*}2\pi^{+}\pi^{-})/I(K_$	$(2\pi^{+})$				I 76/I 52
VALUE		DOCUMENT ID		<u>TECN</u>	COMMENT
$0.331 \pm 0.004 \pm 0.006$		BONVICINI	14	CLEO	All CLEO-c runs
$\Gamma(K_S^0\pi^+2\pi^0)/\Gamma_{\rm tota}$	al				Г ₇₇ /Г
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
28.88±0.58±0.69	3.7k he followir	ABLIKIM	23BV s fits	VBES3 limits 4	e^+e^- at 3.773 GeV
			oo: .		
$1^{29.04\pm0.62\pm0.87}$ See ABLIKIM 23BV	3.4k V.	+ ABLIKIM	22Y	BES3	<i>e</i> ' <i>e</i> at 3.773 GeV
https://pdg.lbl.gov		Page 25		Creat	ed: 7/25/2024 17:21

Citation: S. Navas et al. (Particle Data Group), Phys. Rev. D ${\bf 110},\,030001$ (2024)

	-	/ // (3	, —	~)		- 10/ - 11
VALUE (units 10^{-2})		DOCUMENT ID		TECN	COMMENT	
$0.0 \pm 3.6 \pm 4.2$		¹ ABLIKIM	23BV	vBES3	$D^+ \rightarrow K_S^0$	$\pi^{+}2\pi^{0}$
1 Amplitude analysis	of 1.4k <i>D</i> ⁻	$^+ \rightarrow \ \kappa^0_S \pi^+ 2\pi^0$	events	5.		
- (K ⁰ _S a ₁ (1260) ⁺ , a	$f_1^+ \rightarrow f_0(5)$	$(500)\pi^+, f_0 \rightarrow \pi$	r ⁰ π ⁰)	/Г(<i>К</i> а	$(\pi^+ 2\pi^0)$	Γ ₇₉ /Γ ₇₇
$ALUE$ (units 10^{-2})	1	DOCUMENT ID		TECN	COMMENT	,
3.5±1.1±1.9		¹ ABLIKIM	23BV	vBES3	$D^+ \rightarrow K_s^0$	$\pi^{+}2\pi^{0}$
¹ Amplitude analysis	of 1.4k <i>D</i> ⁻	$^+ \rightarrow \ \kappa^0_S \pi^+ 2 \pi^0$	events	5.	3	
$(\overline{K}_{1}(1400)^{0}\pi^{+}, \overline{K}_{1})$	$\overline{C}^0_1 \to \overline{K}^*$	(892) ⁰ π ⁰ . <u>K</u> *0	→ <i>K</i>	⁰ 2π ⁰)/	$\Gamma(K_{c}^{0}\pi^{+}2\pi)$.0)
	1	() (5		΄ Γ ₈₀ /Γ ₇₇
/ALUE (units 10^{-2})		DOCUMENT ID		TECN	COMMENT	
3.0±1.2±0.4		¹ ABLIKIM	23BV	vBES3	$D^+ \rightarrow K_S^0$	$\pi^{+}2\pi^{0}$
¹ Amplitude analysis	of 1.4k <i>D</i> ⁻	$^+ \rightarrow \kappa^0_c \pi^+ 2 \pi^0$	events	5.	5	
1 5		5				
$\overline{(K^{*}(892)^{0} o^{+}, K^{*})}$	$k^0 \rightarrow K^0_c$	$\pi^{0})/\Gamma(K_{c}^{0}\pi^{+}2)$	π^0)			Γοι /Γτ
(ALLE (units 10^{-2})	/ 5	DOCUMENT ID)	TECN	COMMENT	- 01/ - //
36+27+14			23BV	WRES3	$D^+ \rightarrow \kappa^0$	$_{\pi}+2_{\pi}0$
			2001	VDE00		~ 21
/ALUE (units 10 ⁻²)		DOCUMENT ID		TECN	COMMENT	
).1±2.0±1.0		¹ ABLIKIM	23BV	WRES3	D^+ ν^0	
1 Amplitude analysis				VDL00	$D' \rightarrow n_{\tilde{S}}$	$\pi^{+}2\pi^{0}$
- (0	of 1.4k <i>D</i> ⁻	$^+ \rightarrow \ \kappa^0_S \pi^+ 2 \pi^0$	events	5.	$D^+ \rightarrow \kappa_{\tilde{S}}^*$	$\pi^{+}2\pi^{0}$
$(K_{S}^{0}\rho^{+}\pi^{0} \text{ non-res})$	of 1.4k <i>D</i> ⁻ onant)/Γ	$ \stackrel{+}{\rightarrow} \kappa^{0}_{S} \pi^{+} 2 \pi^{0} $ $(\kappa^{0}_{S} \pi^{+} 2 \pi^{0}) $	events	5.	$D^+ \rightarrow \kappa_S^*$	_{π+2π} 0 Γ ₈₃ /Γ ₇₇
$-(K_{S}^{0}\rho^{+}\pi^{0} \text{ non-res})$	of 1.4k <i>D</i> ⁻	$^{+} \rightarrow \kappa_{S}^{0} \pi^{+} 2 \pi^{0}$ $(\kappa_{S}^{0} \pi^{+} 2 \pi^{0})$ <u>DOCUMENT ID</u>	events	<u>TECN</u>	$D^+ \rightarrow \kappa_S^-$	^{π+2π0} Γ ₈₃ /Γ ₇
$f(K_{S}^{0}\rho^{+}\pi^{0} \text{ non-res})$ / <i>ALUE</i> (units 10 ⁻²) 16.5±1.6±0.3	of 1.4k <i>D</i> ⁻	$ \stackrel{+}{\rightarrow} \kappa_{S}^{0} \pi^{+} 2 \pi^{0} $ $ (\kappa_{S}^{0} \pi^{+} 2 \pi^{0}) $ $ \frac{DOCUMENT ID}{1 \text{ ABLIKIM}} $	events	<u>TECN</u> vBES3	$\frac{COMMENT}{D^+ \to K_S^0}$	π ⁺ 2π ⁰ Γ₈₃/Γ₇ π ⁺ 2π ⁰
$(K_{S}^{O}\rho^{+}\pi^{O}$ non-res (ALUE (units 10 ⁻²) 16.5±1.6±0.3 1 Amplitude analysis	of 1.4k D ⁻	$ \stackrel{+}{\rightarrow} \kappa_{S}^{0} \pi^{+} 2\pi^{0} $ $ (\kappa_{S}^{0} \pi^{+} 2\pi^{0}) $ $ \stackrel{\underline{DOCUMENT \ ID}}{1 \ ABLIKIM} $ $ \stackrel{+}{\rightarrow} \kappa_{S}^{0} \pi^{+} 2\pi^{0} $	events 23BV events	<u>TECN</u> vBES3	$\frac{COMMENT}{D^+ \to K_S^0}$	π ⁺ 2π ⁰ Γ₈₃/Γ₇₇ π ⁺ 2π ⁰
$\frac{\mathcal{K}_{S}^{U} \rho^{+} \pi^{U} \text{ non-res}}{\mathcal{A}LUE (\text{units } 10^{-2})}$ 16.5±1.6±0.3 $^{1} \text{ Amplitude analysis}$	of 1.4k <i>D</i> ⁻	$ \stackrel{+}{\rightarrow} \kappa_{S}^{0} \pi^{+} 2\pi^{0} $ $ (K_{S}^{0} \pi^{+} 2\pi^{0}) $ $ \frac{DOCUMENT ID}{1 \text{ ABLIKIM}} $ $ \stackrel{+}{\rightarrow} \kappa_{S}^{0} \pi^{+} 2\pi^{0} $	events 23BV events	<u>TECN</u> vBES3	$\frac{COMMENT}{D^+ \to \kappa_S^0}$	$\pi^{+} 2\pi^{0}$ F₈₃/F₇₇ $\pi^{+} 2\pi^{0}$
$\frac{(K_{S}^{\circ} \rho^{+} \pi^{\circ} \text{ non-res})}{(ALUE (units 10^{-2}))}$ $\frac{16.5 \pm 1.6 \pm 0.3}{1}$ Amplitude analysis $\frac{(K^{-} 2\pi^{+} \eta)}{\Gamma_{\text{total}}}$	of 1.4k <i>D</i> ⁻	$ \stackrel{+}{\rightarrow} \kappa_{S}^{0} \pi^{+} 2\pi^{0} $ $ (\kappa_{S}^{0} \pi^{+} 2\pi^{0}) $ $ \stackrel{\underline{DOCUMENT \ ID}}{1 \ ABLIKIM} $ $ \stackrel{+}{\rightarrow} \kappa_{S}^{0} \pi^{+} 2\pi^{0} $	events 23BV events	<u>TECN</u> wBES3	$\frac{COMMENT}{D^+ \to K_S^0}$	π ⁺ 2π ⁰ Γ₈₃/Γ₇₇ π ⁺ 2π ⁰ Γ₈₄/Ι
$\Gamma(K_{S}^{\circ}\rho^{+}\pi^{\circ}\text{ non-res})$ $\frac{ALUE \text{ (units } 10^{-2})}{16.5 \pm 1.6 \pm 0.3}$ $^{1} \text{ Amplitude analysis}$ $\Gamma(K^{-}2\pi^{+}\eta)/\Gamma_{\text{total}}$ $\frac{ALUE \text{ (units } 10^{-3})}{16.5 \pm 1.6 \pm 0.3}$	of 1.4k <i>D</i> ⁻ onant)/Г of 1.4k <i>D</i> ⁻ I EVTS	$ \stackrel{+}{\rightarrow} \kappa_{S}^{0} \pi^{+} 2\pi^{0} $ $ (K_{S}^{0} \pi^{+} 2\pi^{0}) $ $ \frac{DOCUMENT ID}{1 \text{ ABLIKIM}} $ $ \stackrel{+}{\rightarrow} \kappa_{S}^{0} \pi^{+} 2\pi^{0} $ $ DOCUMENT ID $	events 23BV events	TECN TECN TECN	$D^+ \rightarrow \kappa_S^0$ $COMMENT$ $D^+ \rightarrow \kappa_S^0$	π ⁺ 2π ⁰ Γ₈₃/Γ7 π ⁺ 2π ⁰ Γ₈₄/Ι
$(K_{S}^{O}\rho^{+}\pi^{O}$ non-res $(ALUE (units 10^{-2}))$ 16.5±1.6±0.3 ¹ Amplitude analysis $(K^{-}2\pi^{+}\eta)/\Gamma_{total}$ $(ALUE (units 10^{-3}))$ 1.35±0.11±0.04	of 1.4k <i>D</i> ⁻ conant)/Г of 1.4k <i>D</i> ⁻ I <u>EVTS</u> 190	$ \stackrel{+}{\rightarrow} \kappa_{S}^{0} \pi^{+} 2\pi^{0} $ $ (K_{S}^{0} \pi^{+} 2\pi^{0}) $ $ \stackrel{1}{\overset{DOCUMENT \ ID}{ABLIKIM} $ $ \stackrel{+}{\rightarrow} \kappa_{S}^{0} \pi^{+} 2\pi^{0} $ $ \xrightarrow{DOCUMENT \ ID}{ABLIKIM} $	events 23BV events 20V	<u>TECN</u> vBES3 s. <u>TECN</u> BES3	$\frac{COMMENT}{D^+ \rightarrow K_S^0}$ $\frac{COMMENT}{e^+ e^-, 3773}$	π ⁺ 2π ⁰ Γ₈₃/Γ7 π ⁺ 2π ⁰ Γ₈₄/Ι 3 MeV
$\Gamma(K_{S}^{0}\rho^{+}\pi^{0} \text{ non-res})$ $\frac{ALUE (\text{units } 10^{-2})}{16.5 \pm 1.6 \pm 0.3}$ $\frac{1}{\text{Amplitude analysis}}$ $\Gamma(K^{-}2\pi^{+}\eta)/\Gamma_{\text{tota}}$ $\frac{ALUE (\text{units } 10^{-3})}{1.35 \pm 0.11 \pm 0.04}$ $\Gamma(K_{S}^{0}\pi^{+}\pi^{0}\eta)/\Gamma_{\text{tota}}$	of 1.4k <i>D</i> ⁻ conant)/Γ of 1.4k <i>D</i> ⁻ I <u>EVTS</u> 190	$ \stackrel{+}{\rightarrow} \kappa_{S}^{0} \pi^{+} 2\pi^{0} $ $ (K_{S}^{0} \pi^{+} 2\pi^{0}) $ $ \stackrel{\underline{DOCUMENT \ ID}}{1 \ ABLIKIM} $ $ \stackrel{+}{\rightarrow} \kappa_{S}^{0} \pi^{+} 2\pi^{0} $ $ \frac{\underline{DOCUMENT \ ID}}{ABLIKIM} $	event: 23BV event: 20V	<u>TECN</u> vBES3 5. <u>TECN</u> BES3	$\frac{COMMENT}{D^+ \rightarrow K_S^0}$ $\frac{COMMENT}{e^+ e^-, 3773}$	π ⁺ 2π ⁰ Γ₈₃/Γ₇₇ π ⁺ 2π ⁰ Γ₈₄/Ι ^{3 MeV} Γ₈₅/Ι
$\Gamma(K_{S}^{0}\rho^{+}\pi^{0} \text{ non-res})$ 16.5±1.6±0.3 ¹ Amplitude analysis $\Gamma(K^{-}2\pi^{+}\eta)/\Gamma_{\text{tota}}$ VALUE (units 10 ⁻³) 1.35±0.11±0.04 $\Gamma(K_{S}^{0}\pi^{+}\pi^{0}\eta)/\Gamma_{\text{tot}}$ VALUE (units 10 ⁻³)	of 1.4k <i>D</i> ⁻ conant)/Γ of 1.4k <i>D</i> ⁻ I <u>EVTS</u> 190	$ \stackrel{+}{\rightarrow} \kappa_{S}^{0} \pi^{+} 2\pi^{0} $ $ (K_{S}^{0} \pi^{+} 2\pi^{0}) $ $ \stackrel{\underline{DOCUMENT \ ID}}{1 \ ABLIKIM} $ $ \stackrel{+}{\rightarrow} \kappa_{S}^{0} \pi^{+} 2\pi^{0} $ $ \frac{\underline{DOCUMENT \ ID}}{ABLIKIM} $ $ DOCUMENT \ ID $	events 23BV events 20V	TECN TECN TECN BES3 TECN	$\frac{COMMENT}{D^+ \rightarrow K_S^0}$ $\frac{COMMENT}{e^+ e^-, 3773}$ $COMMENT$	π ⁺ 2π ⁰ Γ₈₃/Γ₇₇ π ⁺ 2π ⁰ Γ₈₄/Ι ^{3 MeV} Γ₈₅/Ι
$\Gamma(K_{S}^{0}\rho^{+}\pi^{0} \text{ non-res})$ 16.5±1.6±0.3 ¹ Amplitude analysis $\Gamma(K^{-}2\pi^{+}\eta)/\Gamma_{\text{tota}}$ $\frac{VALUE (units 10^{-3})}{1.35\pm0.11\pm0.04}$ $\Gamma(K_{S}^{0}\pi^{+}\pi^{0}\eta)/\Gamma_{\text{tot}}$ $\frac{VALUE (units 10^{-3})}{1.22\pm0.24\pm0.06}$	of 1.4k <i>D</i> ⁻ conant)/Γ of 1.4k <i>D</i> ⁻ I <u>EVTS</u> 190 :al <u>EVTS</u> 50	$ \begin{array}{rcl} + & \rightarrow & \kappa_{S}^{0} \pi^{+} 2 \pi^{0} \\ (\kappa_{S}^{0} \pi^{+} 2 \pi^{0}) \\ & & \frac{DOCUMENT \ ID}{1} \\ & ABLIKIM \\ + & \rightarrow & \kappa_{S}^{0} \pi^{+} 2 \pi^{0} \\ & & \frac{DOCUMENT \ ID}{ABLIKIM} \\ \end{array} $	event: 23BV event: 20V	TECN WBES3 5. TECN BES3 TECN BES3	$\frac{COMMENT}{D^+ \rightarrow K_S^0}$ $\frac{COMMENT}{e^+ e^-, 3773}$ $\frac{COMMENT}{e^+ e^-, 3773}$	π ⁺ 2π ⁰ Γ₈₃/Γ₇₇ π ⁺ 2π ⁰ Γ₈₄/Γ 3 MeV Γ₈₅/Γ 3 MeV
$\Gamma(K_{S}^{0}\rho^{+}\pi^{0} \text{ non-res})$ 16.5±1.6±0.3 ¹ Amplitude analysis $\Gamma(K^{-}2\pi^{+}\eta)/\Gamma_{\text{tota}}$ $VALUE (units 10^{-3})$ 1.35±0.11±0.04 $\Gamma(K_{S}^{0}\pi^{+}\pi^{0}\eta)/\Gamma_{\text{tot}}$ $VALUE (units 10^{-3})$ 1.22±0.24±0.06	of 1.4k <i>D</i> ⁻ conant)/Γ of 1.4k <i>D</i> ⁻ I <u>EVTS</u> 190 :al <u>EVTS</u> 50	$ \stackrel{+}{\rightarrow} \kappa_{S}^{0} \pi^{+} 2\pi^{0} $ $ (K_{S}^{0} \pi^{+} 2\pi^{0}) $ $ \stackrel{\underline{DOCUMENT \ ID}}{1 \ ABLIKIM} $ $ \stackrel{+}{\rightarrow} \kappa_{S}^{0} \pi^{+} 2\pi^{0} $ $ \frac{\underline{DOCUMENT \ ID}}{ABLIKIM} $ $ \frac{\underline{DOCUMENT \ ID}}{ABLIKIM} $	events 23BV events 20V	TECN WBES3 S. TECN BES3 TECN BES3	$\frac{COMMENT}{D^+ \rightarrow K_S^0}$ $\frac{COMMENT}{e^+ e^-, 3773}$ $\frac{COMMENT}{e^+ e^-, 3773}$	π ⁺ 2π ⁰ Γ₈₃/Γ₇₇ π ⁺ 2π ⁰ Γ₈₄/Γ 3 MeV Γ₈₅/Γ 3 MeV
$\Gamma(K_{S}^{0}\rho^{+}\pi^{0} \text{ non-res})$ 16.5±1.6±0.3 ¹ Amplitude analysis $\Gamma(K^{-}2\pi^{+}\eta)/\Gamma_{\text{total}}$ $\frac{VALUE (units 10^{-3})}{1.35\pm0.11\pm0.04}$ $\Gamma(K_{S}^{0}\pi^{+}\pi^{0}\eta)/\Gamma_{\text{tot}}$ $\frac{VALUE (units 10^{-3})}{1.22\pm0.24\pm0.06}$	of 1.4k <i>D</i> ⁻ conant)/Γ of 1.4k <i>D</i> ⁻ I <u>EVTS</u> 190 tal <u>EVTS</u> 50	$ \begin{array}{rcl} + & \rightarrow & \kappa_{S}^{0} \pi^{+} 2 \pi^{0} \\ (\kappa_{S}^{0} \pi^{+} 2 \pi^{0}) \\ & & \frac{DOCUMENT \ ID}{1 \ ABLIKIM} \\ + & \rightarrow & \kappa_{S}^{0} \pi^{+} 2 \pi^{0} \\ & & \frac{DOCUMENT \ ID}{ABLIKIM} \\ & & \frac{DOCUMENT \ ID}{ABLIKIM} \end{array} $	events 23BV events 20V	TECN VBES3 5. TECN BES3 TECN BES3	$\frac{COMMENT}{D^+ \rightarrow K_S^0}$ $\frac{COMMENT}{e^+ e^-, 3773}$ $\frac{COMMENT}{e^+ e^-, 3773}$	π ⁺ 2π ⁰ Γ₈₃/Γ₇ π⁺ 2π⁰ Γ₈₄/Ι 3 MeV Γ₈₅/Ι 3 MeV
$\Gamma(K_{S}^{0}\rho^{+}\pi^{0} \text{ non-res})$ 16.5±1.6±0.3 ¹ Amplitude analysis $\Gamma(K^{-}2\pi^{+}\eta)/\Gamma_{\text{tota}}$ 1.35±0.11±0.04 $\Gamma(K_{S}^{0}\pi^{+}\pi^{0}\eta)/\Gamma_{\text{tot}}$ 1.22±0.24±0.06	of 1.4k <i>D</i> ⁻ conant)/ Г of 1.4k <i>D</i> ⁻ I <u>EVTS</u> 190 tal <u>EVTS</u> 50	$ \stackrel{+}{\rightarrow} \kappa_{S}^{0} \pi^{+} 2\pi^{0} $ $ (K_{S}^{0} \pi^{+} 2\pi^{0}) $ $ \stackrel{\underline{DOCUMENT \ ID}}{1 \ ABLIKIM} $ $ \stackrel{+}{\rightarrow} \kappa_{S}^{0} \pi^{+} 2\pi^{0} $ $ \frac{\underline{DOCUMENT \ ID}}{ABLIKIM} $ $ \frac{\underline{DOCUMENT \ ID}}{ABLIKIM} $	events 23BV events 20V	TECN WBES3 5. TECN BES3 TECN BES3	$D^+ \rightarrow K_S^0$ $\frac{COMMENT}{D^+ \rightarrow K_S^0}$ $\frac{COMMENT}{e^+ e^-, 3773}$ $\frac{COMMENT}{e^+ e^-, 3773}$	π ⁺ 2π ⁰ Γ₈₃/Γ77 π ⁺ 2π ⁰ Γ₈₄/Ι 3 MeV Γ₈₅/Ι 3 MeV

 $\Gamma(K^{-}3\pi^{+}\pi^{-})/\Gamma(K^{-}2\pi^{+})$ Γ_{86}/Γ_{52} TECN COMMENT VALUE DOCUMENT ID **0.061\pm0.005 OUR FIT** Error includes scale factor of 1.1. 0.062±0.008 OUR AVERAGE Error includes scale factor of 1.3. 03D FOCS γ A, $\overline{E}_{\gamma} \approx 180$ GeV $0.058 \pm 0.002 \pm 0.006$ 2923 LINK 239 97C E687 γ Be, $\overline{E}_{\gamma} \approx 200$ GeV FRABETTI $0.077 \pm 0.008 \pm 0.010$ • • • We do not use the following data for averages, fits, limits, etc. • • • $0.09 \pm 0.01 \pm 0.01$ ANJOS 113 90D E691 Photoproduction $\Gamma(\overline{K}^*(892)^0 2\pi^+\pi^-, \overline{K}^*(892)^0 \rightarrow K^-\pi^+)/\Gamma(K^-3\pi^+\pi^-)$ Γ_{87}/Γ_{86} DOCUMENT IDTECNCOMMENTLINK03DFOCS γ A, $\overline{E}_{\gamma} \approx 180$ GeV VALUE $0.21 \!\pm\! 0.04 \!\pm\! 0.06$ $\Gamma(\overline{K}^{*}(892)^{0}\rho^{0}\pi^{+},\overline{K}^{*}(892)^{0}\rightarrow K^{-}\pi^{+})/\Gamma(K^{-}2\pi^{+})$ Γ_{88}/Γ_{52} DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • 97C E687 γ Be, $\overline{E}_{\gamma} \approx 200$ GeV $0.016 \pm 0.007 \pm 0.004$ FRABETTI $\Gamma(\overline{K}^*(892)^0 \rho^0 \pi^+, \overline{K}^*(892)^0 \to K^- \pi^+) / \Gamma(K^- 3\pi^+ \pi^-)$ Γ_{88}/Γ_{86} VALUE DOCUMENT ID TECN COMMENT 03D FOCS γ A, $\overline{E}_{\gamma}~pprox$ 180 GeV $0.40 \pm 0.03 \pm 0.06$ LINK $\Gamma(\overline{K}^*(892)^0 a_1(1260)^+) / \Gamma(K^- 2\pi^+)$ Γ_{89}/Γ_{52} Unseen decay modes of the $\overline{K}^*(892)^0$ and $a_1(1260)^+$ are included. VALUE DOCUMENT ID TECN COMMENT $0.099 \pm 0.008 \pm 0.018$ 03D FOCS $~\gamma$ A, $\overline{E}_{\gamma}~pprox$ 180 GeV LINK $\Gamma(\overline{K}^*(892)^0 2\pi^+\pi^- \operatorname{no-}\rho, \overline{K}^*(892)^0 \to K^-\pi^+)/\Gamma(K^-2\pi^+)$ $\Gamma_{90} / \Gamma_{52}$ DOCUMENT ID TECN COMMENT VALUE • • • We do not use the following data for averages, fits, limits, etc. • • • 97C E687 γ Be, $\overline{E}_{\gamma}~pprox$ 200 GeV $0.032 \pm 0.010 \pm 0.008$ FRABETTI $\Gamma(K^-\rho^0 2\pi^+)/\Gamma(K^- 2\pi^+)$ Γ_{01}/Γ_{52} DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • 97C E687 γ Be, $\overline{E}_{\gamma}~pprox$ 200 GeV $0.034 \pm 0.009 \pm 0.005$ FRABETTI $\frac{\Gamma(K^-\rho^0 2\pi^+)}{\Gamma(K^- 3\pi^+\pi^-)}$ Γ_{91}/Γ_{86} TECN COMMENT VALUE DOCUMENT ID 03D FOCS γ A, $\overline{E}_{\gamma} \approx 180 \text{ GeV}$ $0.30 \pm 0.04 \pm 0.01$ LINK $\Gamma(K^{-}3\pi^{+}\pi^{-} \text{ nonresonant})/\Gamma(K^{-}3\pi^{+}\pi^{-})$ Γ_{92}/Γ_{86} <u>CL%</u> TECN COMMENT VALUE DOCUMENT ID 03D FOCS γ A, $\overline{E}_{\gamma}~pprox$ 180 GeV $0.07 \pm 0.05 \pm 0.01$ LINK • • • We do not use the following data for averages, fits, limits, etc. • • • $\gamma\,{
m Be},\,\overline{E}_\gamma~pprox$ 200 GeV < 0.026 FRABETTI 90 97C E687

Page 27

Created: 7/25/2024 17:21

$\Gamma(K_S^0 2\pi^+ \pi^- \pi^0)/$	Γ _{total}				Г ₉₃ /Г
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
15.28±0.57±0.60	1k	ABLIKIM	22Y	BES3	e^+e^- at 3.773 GeV
$\Gamma(K_{c}^{0}\pi^{+}3\pi^{0})/\Gamma_{tot}$	tal				Γο4/Γ
$VALUE (units 10^{-3})$	FVTS	DOCUMENT ID		TECN	COMMENT
	285		222	RES2	a^+a^- at 2.772 CoV
J.JT⊥V. TT ⊥V.J2	205	ADLINIW	221	DL33	e'e al S.775 Gev
$\Gamma(K^{-}2\pi^{+}2\pi^{0})/\Gamma_{t}$	otal				Г ₉₅ /Г
VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID		TECN	COMMENT
4.95±0.26±0.19	756	ABLIKIM	22Y	BES3	e^+e^- at 3.773 GeV
$\Gamma(K^+ 2K_c^0)/\Gamma_{total}$					Γ06/Γ
$VALUE$ (units 10^{-4})	FVTS	DOCUMENT ID		TECN	- 90 7 -
25 4+0 5+1 2	3551		174	RES3	$e^+e^- \rightarrow \psi(3770)$
23.720.321.2	5551	ADEIRIM	174	DLJJ	$e e \rightarrow \varphi(3110)$
Г(<i>К</i> +2К <mark></mark>)/Г(<i>К</i> -	2π+)				Г ₉₆ /Г ₅₂
VALUE	EVTS	DOCUMENT	ID	TECN	COMMENT
• • • We do not use	the following	data for average	s, fits,	limits, e	etc. • • •
$0.035 \pm 0.010 \pm 0.005$	39 ± 9	ALBRECHT	- 94	41 ARG	$e^+e^-{pprox}10{ m GeV}$
0.085 ± 0.018	70 ± 12	AMMAR	91	1 CLEC	D e^+e^-pprox 10.5 GeV
Г(ф(1020) ⁰ <i>К</i> +)/Г	total				Г ₁₇₇ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
$<2.1 \times 10^{-5}$	90	ABLIKIM	19BI	BES3	e^+e^- at 3773 MeV
$\Gamma(K^+K^-K^0_{s}\pi^+)/$	$\Gamma(K^0_S 2\pi^+)$	π^{-})			Г ₉₇ /Г ₇₆
VALUE (units 10^{-3})	EVTS	, DOCUMENT ID	Т	ECN C	OMMENT
7.7±1.5±0.9 3	5 ± 7	LINK	01c F	$\overline{OCS} \overline{\gamma}$	nucleus, $\overline{E}_{\alpha} \approx 180 \text{ GeV}$
				,	, y
		 Pionic mode 	<u>s</u> —		
$\Gamma(\pi^+\pi^0)/\Gamma_{\rm total}$					Γας/Γ
$VALUE (units 10^{-3})$	FVTS	DOCUMENT ID		TECN	COMMENT
1.247 ± 0.033 OUR FI	T	DOCOMENT ID		TLEN	COMMENT
1.259±0.033±0.023	10k	ABLIKIM	18W	BES3	e ⁺ e ⁻ , 3773 MeV
$\Gamma(\pi^+\pi^0)/\Gamma(\kappa^-2\pi)$	τ ⁺)				Г ₉₈ /Г ₅₂
VALUE (units 10^{-2})	, EVTS	DOCUMENT	ID	TECN	COMMENT
1.33±0.04 OUR FIT	Error incluc	les scale factor of	1.1.		
	RAGE				
1.31 ± 0.06 OUR AVE		MENDE7	10	CLEC) e^+e^- at 3774 MeV
1.31 ± 0.06 OUR AVE 1.29 $\pm 0.04 \pm 0.05$	2649 ± 76	MENDEZ			
1.31±0.06 OUR AVE 1.29±0.04±0.05 1.33±0.11±0.09	$2649 \pm 76 \\ 1229 \pm 99$	AUBERT,B	06	6f BABI	R $e^+e^- \approx \Upsilon(4S)$
1.31\pm0.06 OUR AVE 1.29 \pm 0.04 \pm 0.05 1.33 \pm 0.11 \pm 0.09 1.44 \pm 0.19 \pm 0.10	2649 ± 76 1229 ± 99 171 ± 22	AUBERT,B ARMS	06 04	6F BABI 4 CLEC	$\begin{array}{lll} R & e^+ e^- \approx & \varUpsilon(4S) \\ O & e^+ e^- \approx & 10 \; \mathrm{GeV} \end{array}$
1.31\pm0.06 OUR AVE 1.29 \pm 0.04 \pm 0.05 1.33 \pm 0.11 \pm 0.09 1.44 \pm 0.19 \pm 0.10 • • • We do not use	2649 ± 76 1229 ± 99 171 ± 22 the following	AUBERT,B ARMS data for averages	06 04 s, fits,	6F BABI 4 CLEC limits, e	R $e^+e^- \approx \Upsilon(4S)$ D $e^+e^- \approx 10 \text{ GeV}$ etc. • • •

Page 28

Created: 7/25/2024 17:21

 1 The last error reflects the uncertainty on the amplitude model.

 $\Gamma(\pi^+(\pi^+\pi^-)_{S-\text{wave}})/\Gamma(2\pi^+\pi^-) \qquad \Gamma_{101}/\Gamma_{99}$ This is the "fit fraction" from the Dalitz-plot analysis. See also the next three data blocks.

VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
61.5 ±0.9 OUR AVER	AGE				
$61.8\ \pm 0.5\ \pm 0.6\ \pm 0.5$	572k	^{1,2} AAIJ	23H	LHCB	Dalitz plot fit
$56.00 \!\pm\! 3.24 \!\pm\! 2.14$		³ LINK	04	FOCS	Dalitz fit, 1527 \pm 51
					evts

 $^1\,{\sf AAIJ}$ 23H parameterise the $\pi^+\,\pi^-$ S-wave using one complex number per bin in 50 bins of $\pi^+\pi^-$ invariant mass. ² The last error reflects the uncertainty on the amplitude model.

 3 LINK 04 borrows a K-matrix parametrization from ANISOVICH 03 of the full π - π Swave isoscalar scattering amplitude to describe the $\pi^+\pi^-$ S-wave component of the $\pi^+\pi^-\pi^-$ state. The fit fraction given above is a sum over five f_0 mesons, the $f_0(980)$, $f_0(1300)$, $f_0(1200-1600)$, $f_0(1500)$, and $f_0(1750)$. See LINK 04 for details and discussion. sion.

$\Gamma(\sigma\pi^+,\sigma ightarrow \pi^+\pi^-)/\Gamma(2)$	$2\pi^{+}\pi^{-})$			Γ ₁₀₂ /Γ ₉₉
This is the "fit fraction"	from the Dalitz-plot	analys	sis.	
VALUE	DOCUMENT ID		TECN	COMMENT
0.422 ± 0.027 OUR AVERAGE				
$0.418\!\pm\!0.014\!\pm\!0.025$	BONVICINI	07	CLEO	Dalitz fit, $pprox$ 2240 evts
$0.463 \!\pm\! 0.090 \!\pm\! 0.021$	AITALA	01 B	E791	Dalitz fit, 1172 evts
$\Gamma(f_0(980)\pi^+, f_0 \to \pi^+\pi^-)$	$^{-})/\Gamma(2\pi^{+}\pi^{-})$			Г ₁₀₃ /Г ₉₉
This is the "fit fraction"	from the Dalitz-plot	analys	sis.	
VALUE	DOCUMENT ID		TECN	COMMENT

VALUE	DOCUMENT ID		TECN	COMMENT
0.048 ± 0.010 OUR AVERAGE	Error includes scale	factor	of 1.3.	
$0.041\!\pm\!0.009\!\pm\!0.003$	BONVICINI	07	CLEO	Dalitz fit, $pprox$ 2240 evts
$0.062\!\pm\!0.013\!\pm\!0.004$	AITALA	01 B	E791	Dalitz fit, 1172 evts

Citation: S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)

Citation: S. Navas et al. (Particle Data Group), Phys. Rev. D ${\bf 110},\,030001$ (2024)

$\Gamma(\rho(1450)^0 \pi^+, \rho^0 -$	$\rightarrow \pi^+\pi^-)$	$\Gamma(2\pi^+\pi^-)$	analy	cic		Г ₁₀₇ /Г ₉₉
VALUE (units 10^{-2}) (CL% EVTS	DOCUMENT	ID	SIS. TE(CN COMME	NT
5.4±0.4±1.3±0.8	572k	¹ AAIJ	:	23H LH	CB Dalitz	plot fit
• • We do not use th	ne following o	lata for average	s, fits	, limits,	etc. • • •	
<2.4	95	BONVICIN	II (07 CL	EO Dalitz	fit, $pprox$ 2240
$0.7 \pm 0.7 \pm 0.3$		AITALA	(01B E79	evts 91 Dalitz	s fit, 1172 evts
¹ The last error reflec	ts the uncert	tainty on the am	plituc	le mode	l.	
$\Gamma(ho(1700)^0 \pi^+, ho^0 -$	$\rightarrow \pi^+\pi^-)$	$/\Gamma(2\pi^+\pi^-)$				Г ₁₀₈ /Г ₉₉
VALUE (units 10 ⁻²)	EVTS	DOCUMEN	T ID	TE	CN COMM	ENT
$5.7 {\pm} 0.5 {\pm} 1.0 {\pm} 1.0$	572k	1 AAIJ		23H LH	ICB Dalitz	plot fit
1 The last error reflec	ts the uncert	tainty on the am	plituc	le mode	l.	
-(f ₀ (1500)π ⁺ , f ₀ This is the "fit fr	$\rightarrow \pi^+\pi^-)/\pi^+$	$\Gamma(2\pi^+\pi^-)$ the Dalitz-plot	analy	sis. TFCN	COMMENT	Г ₁₀₉ /Г ₉₉
$0.034 \pm 0.010 \pm 0.008$		BONVICINI	07	CLEO	Dalitz fit,	pprox 2240 evts
$f(f_0(1710)\pi^+, f_0 - f_0)$	$\pi^+\pi^-)/$	Γ(2π⁺π⁻) the Dalitz-plot	analv	sis.		Г ₁₁₀ /Г ₉₉
ALUE	<u>CL%</u>	DOCUMENT ID	unury	TECN	<u>COMMENT</u>	
<0.016	95	BONVICINI	07	CLEO	Dalitz fit,	pprox 2240 evts
Γ (f₀(1790)π⁺, f₀ – This is the "fit fr	$\pi^+\pi^-)/$	Γ(2π⁺π⁻) the Dalitz-plot	analy	sis.		Г ₁₁₁ /Г ₉₉
<u> </u>	<u>CL%</u>	DOCUMENT ID	07	<u>TECN</u>	<u>COMMENT</u>	a. 0040
<0.02	95	BOINVICINI	07	CLEU	Dalitz fit,	\approx 2240 evts
$\frac{f((\pi^+\pi^+)_{S-\text{wave}}\pi^+)}{\text{This is the "fit fr}}$	$-)/\Gamma(2\pi^+)$	π ⁻) the Dalitz-plot	analy	sis.	COMMENT	Г ₁₁₂ /Г ₉₉
<0.037	<u>95</u>	BONVICINI	07	CLEO	Dalitz fit,	pprox 2240 evts
$(2\pi^+\pi^-$ nonreson This is the "fit fr	a nt)/Γ(2 π [•] action" from	+π ⁻) the Dalitz-plot	analy	sis.		Г ₁₁₃ /Г ₉₉
/ALUE	<u>CL%</u>	DOCUMENT ID	J	TECN	<u>COMMENT</u>	
<0.035	95	BONVICINI	07	CLEO	Dalitz fit,	pprox 2240 evts
• • We do not use th	ne following o	lata for average	s, fits	, limits,	etc. ● ● ●	
$0.078 \pm 0.060 \pm 0.027$		AITALA	01 B	E791	Dalitz fit,	1172 evts
$\Gamma(\pi^+ 2\pi^0)/\Gamma_{\text{total}}$						Г ₁₁₄ /Г
/ALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID		TECN	COMMENT	
46.1±1.2±0.9	2k	ABLIKIM	22B	G BES3	e^+e^- at	3.773 GeV
$\Gamma(\pi^+ 2\pi^0)/\Gamma(\kappa^- 2\pi)$	τ ⁺)					Γ ₁₁₄ /Γ ₅₂
$\frac{VALUE}{UNIts 10^{-2}}$	<u>EVIS</u>	DUCUMEN			<u>COMMENT</u>	(2770)
).0±0.3±0.3	1535 ± 89	RUBIN	06	CLE0	e ' e^- at ψ	(3770)

$\Gamma(\pi^+ 3\pi^0)/\Gamma_{total}$	l			Г ₁₁₆ /Г
VALUE (units 10^{-4})	EVTS	DOCUMENT ID	TECN	COMMENT
41.7±2.2±1.3	570	ABLIKIM	22BG BES3	e^+e^- at 3.773 GeV
$\Gamma(2\pi^+\pi^-\pi^0)/\Gamma_0$	total			Г ₁₁₅ /Г
VALUE (units 10^{-4})	EVTS	DOCUMENT ID	TECN	COMMENT
$116.5 {\pm} 2.1 {\pm} 2.1$	4.6k	ABLIKIM	22BG BES3	e^+e^- at 3.773 GeV
$\Gamma(2\pi^+\pi^-\pi^0)/\Gamma$	$(K^-2\pi^+)$			Γ ₁₁₅ /Γ ₅₂
VALUE (units 10^{-2})	EVTS	DOCUMENT	ID TECN	COMMENT
$12.4 \pm 0.5 \pm 0.6$	5701 ± 205	RUBIN	06 CLE	O e^+e^- at $\psi(3770)$
$\Gamma(\pi^+ 4\pi^0)/\Gamma_{\rm total}$	I			Г ₁₁₇ /Г
VALUE (units 10^{-4})	EVTS	DOCUMENT ID	TECN	COMMENT
19.5±3.6±2.3	57	ABLIKIM	22BG BES3	e^+e^- at 3.773 GeV
$\Gamma(2\pi^+\pi^-2\pi^0)/\Gamma$	total			Г ₁₁₈ /Г
VALUE (units 10^{-4})	EVTS	DOCUMENT ID	TECN	COMMENT
107.4±4.0±3.0	1.2k	ABLIKIM	22BG BES3	e^+e^- at 3.773 GeV
$\Gamma(3\pi^+2\pi^-)/\Gamma_{tot}$	tal			Г ₁₁₉ /Г
VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID	TECN	COMMENT
18.2±1.1±1.0	460	ABLIKIM	22BG BES3	$e^{-}e^{-}$ at 3.773 GeV
$\Gamma(3\pi^+2\pi^-)/\Gamma(H)$	$(-2\pi^+)$			Γ ₁₁₉ /Γ ₅₂
VALUE (units 10 ⁻²)	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT
1.77 ± 0.17 OOR FI $1.73 \pm 0.20 \pm 0.17$	∎ 732 + 77	RUBIN		e^+e^- at $\psi(3770)$
• • • We do not us	e the following o	data for averages	s, fits, limits, e	etc. • • •
$2.3 \pm 0.4 \pm 0.2$	58	FRABETTI	97C E687	$\gamma{ m Be}$, $\overline{E}_{\gamma}~pprox~$ 200 GeV
$\Gamma(3\pi^+2\pi^-)/\Gamma(F)$	(-3π+π-)	DOCUMENT ID	TECN	Г ₁₁₉ /Г ₈₆
0.289±0.019 OUR 0.290±0.017±0.01	FIT 1 835	LINK	03D FOCS	γ A, $\overline{E}_{\gamma}~pprox~180~{ m GeV}$
$\Gamma(2\pi^+\pi^-3\pi^0)/I$	total			Г ₁₂₀ /Г
VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID	TECN	
34.2±3.1±1.6	186	ABLIKIM	22BG BES3	$e^{-}e^{-}$ at 3.773 GeV
$\Gamma(3\pi^+2\pi^-\pi^0)/I$	total			Г ₁₂₁ /Г
VALUE (units 10^{-4})	EVTS	DOCUMENT ID	TECN	COMMENT
23.4±2.2±1.5	183	ABLIKIM	22BG BES3	e^+e^- at 3.773 GeV

$\Gamma(n\pi^+)/\Gamma_{total}$						Г122/Г
Unseen decay r	nodes of the r	are included.				- 122/ -
VALUE (units 10^{-4})	EVTS	<u>DOCUMENT ID</u>		TECN	COMMENT	
37.7 ± 0.9 OUR FI	Г					
37.90±0.70±0.68	12k	ABLIKIM	180	/ BES3	e ⁺ e ⁻ , 377	'3 MeV
• • • We do not use	the following	data for averages	, fits, l	limits, e	etc. • • •	
$30.7\ \pm 2.2\ \pm 1.3$	258	ABLIKIM	16 D	BES3	e^+e^- at 3	773 MeV
$34.3 \pm 1.4 \pm 1.7$	1033 ± 42	ARTUSO	08	CLEC	See MEND	EZ 10
$\Gamma(\eta \pi^+)/\Gamma(K^-2\pi)$	·+)					Γ_{122}/Γ_{52}
Unseen decay r	nodes of the r	are included.				
$\frac{VALUE \text{ (units } 10^{-2})}{1000 \text{ Log 11} \text{ OUD FIT}}$	EVTS	DOCUMENT	ID	TECN	COMMENT	
4.02 ± 0.11 OUR FIT	Error includ	es scale factor of	1.1.		a + -	
3.8/±0.09±0.19	2940 ± 68	MENDEZ	fite) CLE limita a	Oe'e at	3774 MeV
			, IILS, I			
$3.81 \pm 0.26 \pm 0.21$	377 ± 26	RUBIN	06	O CLE	O See ARTU	50 08
$\Gamma \left(\eta \pi^+ \pi^0 \right) / \Gamma_{\rm total}$						Г ₁₂₃ /Г
VALUE (units 10^{-4})	EVTS	DOCUMENT ID)	TECN	COMMENT	
20.5±3.5 OUR AVE	RAGE Error i	includes scale fact	tor of 2	2.2.	1	
$22.3 \pm 1.5 \pm 1.0$	381	ABLIKIM	20G	BES3	e ⁺ e ⁻ , 377	'3 MeV
$13.8 \pm 3.1 \pm 1.6$	149 ± 34	ARTUSO	08	CLEC) e^+e^- at ψ	(3770)
• • • We do not use	the following	data for averages	, fits, l	limits, e	etc. • • •	
$24.7 \pm 9.3 \pm 1.6$	42	ABLIKIM	20A	A BES3	e ⁺ e ⁻ , 377	'3 MeV
$\Gamma(\eta 2\pi^+\pi^-)/\Gamma_{\rm tot}$	al					Г ₁₂₄ /Г
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	
$3.41 \pm 0.17 \pm 0.10$	515	ABLIKIM	20v	BES3	e ⁺ e ⁻ , 3773	MeV
$\Gamma(\eta \pi^+ 2\pi^0)/\Gamma_{tota}$	1					Γ ₁₂₅ /Γ
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	
3.20±0.28±0.17	190	ABLIKIM	20V	BES3	e^+e^- , 3773	MeV
$\Gamma(\eta \pi^+ 3\pi^0)/\Gamma_{\text{tota}}$	J					Г ₁₂₆ /Г
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT	
28.9±4.0±2.2	80	ABLIKIM	22bg	BES3	e^+e^- at 3.7	73 GeV
$\Gamma(\eta 2\pi^+\pi^-\pi^0)/\Gamma$	total					Г ₁₂₇ /Г
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT	
38.8±3.2±1.2	190	ABLIKIM	22bg	BES3	e^+e^- at 3.7	73 GeV
$\Gamma(\eta\eta\pi^+)/\Gamma_{total}$						Г ₁₂₈ /Г
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT	
29.6±2.4±1.0	179	ABLIKIM	20G	BES3	e ⁺ e ⁻ , 3773	MeV

$\Gamma(\omega\pi^+)/\Gamma_{total}$ Unseen decay r	modes of the ω	are included.			Г ₁₂₉ /Г
VALUE (units 10^{-4})	CL% EVTS	DOCUMENT ID		TECN	COMMENT
2.79±0.57±0.16	79	ABLIKIM	16 D	BES3	e^+e^- at 3773 MeV
• • • We do not use	the following d	ata for averages,	fits, li	mits, etc	∴ • • •
<3.4	90	RUBIN	06	CLEO	e^+e^- at $\psi(3770)$
$\Gamma(\omega \pi^+ \pi^0) / \Gamma_{\text{total}}$					Г ₁₃₀ /Г
VALUE (units 10^{-3})	<u> </u>	DOCUMENT ID	7	<u>ECN</u>	COMMENT
$3.87 \pm 0.83 \pm 0.25$	233 1	ABLIKIM	20aa E	BES3 e	e ⁺ e [−] , 3773 MeV
¹ ABLIKIM 20AA re	eports a statistic	cal significance o	f 7.7 σ	for this	measurement.
$\Gamma(\eta'(958)\pi^+)/\Gamma_{tc}$	otal				Г ₁₃₁ /Г
Unseen decay r	nodes of the η'	(958) are include	d.		
VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID		TECN	COMMENT
49 .7 ± 1.9 00K 111 51 .2+1.4+2.1	3.1k	ABLIKIM	18W	BES3	e^+e^- 3773 MeV
• • • We do not use	the following d	ata for averages,	fits, li	mits, etc	
44.2±2.5±2.9	352 ± 20	ARTUSO	08	CLEO	See MENDEZ 10
$\Gamma(\eta'(958)\pi^+)/\Gamma($	$K^{-}2\pi^{+})$				Γ ₁₃₁ /Γ ₅₂
Unseen decay r	nodes of the η'	(958) are include	d.		
<u>VALUE (units 10^{-2})</u>	EVTS	DOCUMENT ID		TECN	COMMENT
5.30 ± 0.21 OUR FIT $5.12 \pm 0.17 \pm 0.25$	1037 ± 35	MENDEZ	10	CLEO	e^+e^- at 3774 MeV
$\Gamma(\eta'(958)\pi^+\pi^0)/$					Г132/Г
Unseen decay r	nodes of the n'	(958) are include	d.		1927
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
15.7±4.3±2.5	33 ± 9	ARTUSO	08	CLEO	e^+e^- at $\psi(3770)$
	— Hadronic	modes with a	ĸĸ	pair —	
				•	F /F
$\left(\frac{K_{S}K'}{}\right)/\left \text{total} \right $					133/
<u>VALUE (units 10^{-3})</u>	EVTS	DOCUMENT ID)	TECN	COMMENT
3.04 ± 0.09 OUR F	IT Error inclu	des scale factor o	of 2.2.		\pm = arra MAM
3.183±0.029±0.000	18k the following d	ABLIKIM	18W fits li	/ BES3 mits etc	<i>e ' e , 3773</i> MeV
			1014		
$3.02 \pm 0.09 \pm 0.08$ $3.14 \pm 0.09 \pm 0.08$	$\frac{780}{1971 \pm 51}$	BONVICINI	19M 08	CLEO	See MENDEZ 10
$\frac{\Gamma(K_{S}^{0}K^{+})}{\Gamma(K_{S}^{0}K^{+})}$	π+) _{EVTS}	DOCUMENT I	D	TECN	Г ₁₃₃ /Г ₅₀ соммент
0.194 ±0.006 OUR	FIT Error inc	ludes scale facto	r of 2.8	3.	
0.1901 ± 0.0024 OUR	AVERAGE				
$0.1899 \pm 0.0011 \pm 0.0$	022 101k \pm 561	WON	09	BELL	e^+e^- at $arphi(4S)$
$0.1892 \pm 0.0155 \pm 0.0$	073 278 \pm 21	ARMS	04	CLEO	$e^+e^- \approx 10 \text{ GeV}$
$0.1996 \pm 0.0119 \pm 0.0$	096 949	LINK	026	B FOCS	γ A, ${\it E}_{\gamma} pprox$ 180 GeV
https://pdg.lbl.go	v	Page 35		Created	d: 7/25/2024 17:21

 $\bullet \bullet \bullet$ We do not use the following data for averages, fits, limits, etc. $\bullet \bullet \bullet$

0.222	$\pm 0.037 \ \pm 0.013$	63 ± 10	ABLIKIM	05F BES	$e^+e^- \approx \psi(3770)$
0.222	± 0.041 ± 0.019	70	BISHAI	97 CLEO	See ARMS 04
0.25	$\pm 0.04 \pm 0.02$	129	FRABETTI	95 E687	$\gamma \operatorname{Be} \overline{E}_{\gamma} pprox 200 \ \mathrm{GeV}$
0.271	$\pm 0.065 \ \pm 0.039$	69	ANJOS	90C E691	γBe
0.317	$\pm 0.086 \ \pm 0.048$	31	BALTRUSAIT.	85e MRK3	e^+e^- 3.77 GeV
0.25	± 0.15	6	SCHINDLER	81 MRK2	e^+e^- 3.771 GeV

$\Gamma(K_{S}^{0}K^{+})/\Gamma(K^{-}2\pi^{+})$

Γ_{133}/Γ_{52}

VALUE (units 10 ⁻²)	EVTS	DOCUMENT I	D	TECN	COMMENT
3.24 ± 0.09 OUR FI	T Error includ	es scale facto	r of 2.3	5.	
$3.35 {\pm} 0.06 {\pm} 0.07$	5161 ± 86	MENDEZ	10	CLEO	e^+e^- at 3774 MeV
$\bullet \bullet \bullet$ We do not us	e the following	data for avera	ages, fi	ts, limits	s, etc. ● ● ●
$3.02 \pm 0.18 \pm 0.15$	949	¹ LINK	02 B	FOCS	γ nucleus, $\overline{E}_{\gamma}pprox$ 180 GeV

¹ This LINK 02B result is redundant with a result in the previous datablock.

$\Gamma(K_L^0 K^+) / \Gamma_{\text{total}}$					Г ₁₃	₄/Γ
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	
$3.21 \pm 0.11 \pm 0.11$	650	ABLIKIM	19M	BES3	e^+e^- at 3773 MeV	,
$\Gamma(\kappa_{S}^{0}\kappa^{+}\pi^{0})/\Gamma_{\rm total}$	I				Г ₁₃	5/Г
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	
5.07±0.19±0.23	470	ABLIKIM	19M	BES3	e^+e^- at 3773 MeV	,
Γ(<i>K</i> *(892) ⁺ <i>K</i> ⁰ ₅ , <i>K</i>	$^{*+} \rightarrow K^+$	π^0)/ $\Gamma(K^0_SK^+$	⁻ π ⁰)		Г ₁₃₆ /Г	135
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
$0.571 \pm 0.026 \pm 0.042$	692	¹ ABLIKIM	21AD	BES3	e^+e^- at 3.773 GeV	/
1 ABLIKIM 21AD valu	ue is a fit fra	iction from an ar	nplitu	de analy	sis of $D^+ \to K^+ K_0^0$	$\frac{1}{5}\pi^{0}$
with four componer	nts. Reconst	ructs the $K^*(892)$	2) $^+$ fr	om its <i>I</i>	$\kappa^+\pi^0$ final state.	
Γ(K *(892) ⁰ K ⁺ , K	$^{*0} \rightarrow K^0_S \pi$	$-0)/\Gamma(K_S^0K^+)$	π ⁰)		Г ₁₃₇ /Г	135
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
$0.102 \pm 0.015 \pm 0.022$	692	¹ ABLIKIM	21AD	BES3	e^+e^- at 3.773 GeV	/
1 ABLIKIM 21AD valu	ue is a fit fra	ction from an ar	nplitu	de analy	sis of $D^+ o K^+ K_0^0$	$\frac{1}{5}\pi^{0}$
with four componer	nts. Reconst	ructs the \overline{K}^* (892	2) ⁰ fro	om its <i>K</i>	$S_{S}^{0}\pi^{0}$ final state.	
Г(<i>К</i> *(892) ⁺ <i>К</i> ⁰ _S)/Г	$(K_S^0\pi^+)$				Г ₁₃₈ /	Г ₅₀
Unseen decay mo	des of the <i>k</i>	$(892)^+$ are ind	cluded			
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the						
	ne following	data for average	s, fits,	limits, e	etc. • • •	
$1.1 \pm 0.3 \pm 0.4$	ne following 67	data for average FRABETTI	s, fits, 95	limits, e E687	etc. • • • $\gamma { m Be} \overline{E}_\gamma pprox 200 { m GeV}$	
1.1 \pm 0.3 \pm 0.4 $\Gamma(\kappa_L^0 \kappa^+ \pi^0)/\Gamma_{\text{total}}$	ne following 67	data for average: FRABETTI	s, fits, 95	limits, e E687	etc. • • • • $\gamma \operatorname{Be} \overline{E}_{\gamma} \approx 200 \operatorname{GeV}$	9/Г
1.1 \pm 0.3 \pm 0.4 $\Gamma(K_L^0 K^+ \pi^0)/\Gamma_{\text{total}}$ <u>VALUE (units 10⁻³)</u>	ne following 67 <u>EVTS</u>	data for average: FRABETTI <u>DOCUMENT ID</u>	s, fits, 95	limits, e E687 <u>TECN</u>	etc. • • • • $\gamma \operatorname{Be} \overline{E}_{\gamma} \approx 200 \operatorname{GeV}$ Γ_{139}	9/F

$\Gamma(K^+\overline{K}^*_0(1430)^0, \overline{K})$	(1430	$)^0 \rightarrow K^- \pi^+$)/Г(K+ K-	$\pi^+)$	$\Gamma_{142}/\Gamma_{140}$
VALUE (%)	action T	DOCUMENT ID	plot a	TECN	COMMENT	
$18.8 \pm 1.2 \begin{array}{c} +3.3 \\ -3.4 \end{array}$		RUBIN	08	CLEO	Dalitz fit, 19,	458 ± 163 evts
 • • • We do not use the 	ne followi	ng data for ave	rages,	fits, lim	its, etc. • • •	
$37.0 \pm 3.5 \pm 1.8$		FRABETTI	95 B	E687	Dalitz fit, 915	o evts
F(K⁺ K[*]₂(1430)⁰, K This is the "fit fr	$\overline{C_2^* \rightarrow K}$	$(-\pi^+)/\Gamma(K^+)$	K – plot a	π+) nalysis.	COMMENT	Γ ₁₄₃ /Γ ₁₄₀
1.7+0.4 ^{+1.2}		RUBIN	08		Dalitz fit 19	458+163 evts
Γ(Κ⁺ κ₀(700), κ₀ This is the "fit fr. <i>VALUE</i> (%)	$\rightarrow K^{-}$	π ⁺)/Γ(K ⁺ K rom the Dalitz- <u>DOCUMENT ID</u>	'[−]π[−] plot a	+) Inalysis. 	COMMENT	Γ ₁₄₄ /Γ ₁₄₀
$7.0 \pm 0.8 {+3.5 \atop -2.0}$		RUBIN	08	CLEO	Dalitz fit, 19,	458 ±163 evts
Γ(a₀(1450)⁰π⁺, a₀ This is the "fit fr VALUE (%)	$\rightarrow K^+$	K⁻)/Γ(K⁺ I rom the Dalitz- <u>DOCUMENT ID</u>	ζ[—]π plot a	+) nalysis. <u>TECN</u>	COMMENT	Γ ₁₄₅ /Γ ₁₄₀
$4.6 \pm 0.6 {+7.2 \atop -1.8}$		RUBIN	08	CLEO	Dalitz fit, 19,	458 ±163 evts
$\Gamma(\phi(1680)\pi^+, \phi \rightarrow This is the "fit fr.VALUE (%)$	K⁺K⁻ action" f	rom the Dalitz- <u>DOCUMENT ID</u>	π⁺) plot a	nalysis. <u>TECN</u>	COMMENT	Г ₁₄₆ /Г ₁₄₀
$0.51 \pm 0.11 + 0.37$ -0.16		RUBIN	08	CLEO	Dalitz fit, 19,	458 ± 163 evts
$\Gamma(\phi \pi^+, \phi \rightarrow K^+ K)$ This is the "fit from <i>VALUE</i> (%)	-)/Γ(/ action" f	(+K⁻π+) rom the Dalitz- <u>DOCUMENT ID</u>	plot a	nalysis. <u>TECN</u>	COMMENT	Γ ₁₄₇ /Γ ₁₄₀
27.8±0.4 ^{+0.2} -0.5		RUBIN	08	CLEO	Dalitz fit, 19,	458 \pm 163 evts
● ● ● We do not use th 29.2±3.1±3.0	ne followi	ng data for ave FRABETTI	rages, 95B	fits, lim E687	its, etc. ● ● ● Dalitz fit, 915	evts
$\Gamma(\phi\pi^+)/\Gamma_{ ext{total}}$						Г ₁₄₈ /Г
<i>VALUE</i> (units 10 ⁻³) 5 70+0 05+0 13	194	DOCUMENT	ID	10RI RE	$\frac{CN}{COMMENT}$	3773 Mal/
$\Gamma(K^+K^-\pi^+\pi^0)/\Gamma_0$	ION			IJDI DL		
VALUE (units 10^{-3})	EVTS	DOCUMENT	- ID	TE	CN COMMENT	· 149/ '
5.62±0.20±0.25	1.3k	ABLIKIM		20AC BE	ES3 e^+e^- at	3.773 GeV
$\Gamma(K^+K^-\pi^+\pi^0)/\Gamma$	(K 2π	$^{+}\pi^{0})$				Г ₁₄₉ /Г ₇₅
VALUE (units 10^{-2})	EVTS	DOCUMENT	- ID	TE	CN COMMENT	
11.32±0.13±0.26	50k	LI		23G BE	ELL e^+e^- at $n=1,$	/near $\Upsilon({\sf nS})$, .,5
https://pdg.lbl.gov		Page 38		C	reated: 7/25	/2024 17:21

$\Gamma(K_{S}^{0}K_{S}^{0}\pi^{+})/\Gamma$	total				Г ₁₅₀ /Г
VALUE (units 10^{-4})	EVTS	DOCUMENT ID	TECN	COMMENT	
27.0±0.5±1.2	4897	ABLIKIM	17A BES3	$e^+e^- \rightarrow$	ψ (3770)
$\Gamma(K^0_{S}K^0_{S}\pi^+\pi^0)$	/Γ _{total}				Г ₁₅₁ /Г
VALUE (units 10^{-3})	EVTS	DOCUMENT ID	TECN	COMMENT	-
$1.34 {\pm} 0.20 {\pm} 0.06$	80	ABLIKIM	20AC BES3	e^+e^- at 3	3.773 GeV
$\Gamma(K_{S}^{0}K^{+}\eta)/\Gamma_{to}$	tal				Г ₁₅₂ /Г
VALUE (units 10^{-4})	EVTS	DOCUMENT ID	TECN	COMMENT	
$1.85 \pm 0.52 \pm 0.08$	14	ABLIKIM	20v BES3	e ⁺ e ⁻ , 377	73 MeV
$\Gamma(K^+K^0_S\pi^+\pi^-$)/Γ _{total}				Г ₁₅₃ /Г
VALUE (units 10^{-3})	EVTS	DOCUMENT ID	TECN	COMMENT	
$1.89 \pm 0.12 \pm 0.05$	277	ABLIKIM	20AC BES3	e^+e^- at 3	3.773 GeV
$\Gamma(K^+K^0_S\pi^+\pi^-$	$)/\Gamma(K_S^0 2\pi^+$	π^{-}			Г ₁₅₃ /Г ₇₆
VALUE (units 10^{-2})	EVTS	DOCUMENT ID	TECN C	COMMENT	
$5.62 \pm 0.39 \pm 0.40$	469 ± 32	LINK (D1C FOCS γ	nucleus, \overline{E}_{γ}	\approx 180 GeV
$\Gamma(K^0_S K^+ \pi^0 \pi^0)$	/Γ _{total}				Г ₁₅₄ /Г
VALUE (units 10^{-4})	EVTS	DOCUMENT ID	TECN	COMMENT	
5.8±1.2±0.4	34	ABLIKIM	20AC BES3	e^+e^- at 3	3.773 GeV
$\Gamma(K_S^0 K^- 2\pi^+)/$	Γ _{total}				Г ₁₅₅ /Г
VALUE (units 10^{-3})	EVTS	DOCUMENT ID	TECN	COMMENT	
$2.27 \pm 0.12 \pm 0.06$	467	ABLIKIM	20AC BES3	e^+e^- at 3	3.773 GeV
$\Gamma(K_S^0 K^- 2\pi^+)/$	′Γ(<i>K</i> ⁰ ₅ 2π ⁺ π	-)			Г ₁₅₅ /Г ₇₆
VALUE (units 10^{-2})	EVTS	DOCUMENT ID	TECN C	COMMENT	
$7.68 \pm 0.41 \pm 0.32$	670 ± 35	LINK	D1C FOCS γ	nucleus, \overline{E}_{γ}	\approx 180 GeV
$\Gamma(K^+K^-2\pi^+\pi$	⁻)/Γ(<i>K</i> ⁻ 3π	$(\pi^{+}\pi^{-})$			Г ₁₅₆ /Г ₈₆
VALUE	EVTS	DOCUMENT ID	TECN	<u>COMMENT</u>	
$0.040 \pm 0.009 \pm 0.02$	L9 38	LINK	03D FOCS	γ A, \overline{E}_{γ} \approx	= 180 GeV
$\Gamma(\phi \pi^+ \pi^0) / \Gamma_{\text{tot}}$	al / modes of the	the are included			Г ₁₅₇ /Г
VALUE	y modes of the	ϕ are included. DOCUMENT ID	TECN	COMMENT	
0.023±0.010		¹ BARLAG	92c ACCM	π^- Cu 230) GeV
¹ BARLAG 92c o	omputes the b	ranching fraction ι	ısing topologi	cal normaliza	tion.
$\Gamma(\phi \rho^+)/\Gamma(K^-2)$	$2\pi^+)$				Γ ₁₅₈ /Γ ₅₂
VALUE	cL%	φ are included. DOCUMENT ID	TECN	COMMENT	
<0.16	90	DAOUDI	92 CLEO	$e^+e^- \approx$	10.5 GeV

 $\Gamma(K^+K^-\pi^+\pi^0 \operatorname{non-}\phi)/\Gamma_{total}$ Γ_{159}/Γ TECN COMMENT VALUE DOCUMENT ID $0.015\substack{+0.007\\-0.006}$ ¹ BARLAG 92C ACCM π^- Cu 230 GeV ¹BARLAG 92C computes the branching fraction using topological normalization. $\Gamma(K^+K^-\pi^+\pi^0 \operatorname{non-}\phi)/\Gamma(K^-2\pi^+)$ Γ_{159}/Γ_{52} DOCUMENT ID TECN COMMENT VALUE CL% • • We do not use the following data for averages, fits, limits, etc. • • • < 0.25 90 ANJOS 89E E691 Photoproduction Doubly Cabibbo-suppressed modes $\Gamma(K^+\pi^0)/\Gamma_{\text{total}}$ Γ_{160}/Γ VALUE (units 10^{-4}) DOCUMENT ID TECN EVTSCOMMENT 2.08±0.21 OUR FIT Error includes scale factor of 1.4. 2.35 ± 0.20 OUR AVERAGE 18W BES3 e^+e^- , 3773 MeV $2.32\!\pm\!0.21\!\pm\!0.06$ 1.8k ABLIKIM 06F BABR $e^+e^- \approx \Upsilon(4S)$ $2.52 \pm 0.47 \pm 0.26$ 189 ± 37 AUBERT,B \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet $2.28 \!\pm\! 0.36 \!\pm\! 0.17$ 148 ± 23 DYTMAN 06 CLEO See MENDEZ 10 $\Gamma(K^+\pi^0)/\Gamma(K^-2\pi^+)$ Γ_{160}/Γ_{52} VALUE (units 10^{-3}) EVTS DOCUMENT ID TECN COMMENT 2.21±0.23 OUR FIT Error includes scale factor of 1.5. CLEO e^+e^- at 3774 MeV $1.9 \pm 0.2 \pm 0.1$ 343 ± 37 MENDEZ 10 $\Gamma(K^+\eta)/\Gamma_{\text{total}}$ Γ_{161}/Γ VALUE (units 10^{-3}) DOCUMENT ID TECN COMMENT EVTS0.125±0.016 OUR FIT Error includes scale factor of 1.1. 18W BES3 e^+e^- , 3773 MeV $0.151 \pm 0.025 \pm 0.014$ 439 ABLIKIM $\Gamma(K^+\eta)/\Gamma(\eta\pi^+)$ $\Gamma_{161}/\Gamma_{122}$ VALUE (%) EVTS DOCUMENT ID COMMENT TECN 3.3 ±0.4 OUR FIT Error includes scale factor of 1.1. BELL $e^+e^- \approx \Upsilon(4S)$ $3.06 \pm 0.43 \pm 0.14$ 166 ± 23 WON 11 $\Gamma(K^+\eta'(958))/\Gamma_{total}$ Γ_{162}/Γ VALUE (units 10^{-3}) EVTS DOCUMENT ID TECN COMMENT 0.185 ± 0.020 OUR FIT $0.164 \pm 0.051 \pm 0.024$ 18W BES3 e⁺e⁻, 3773 MeV ABLIKIM 87 $\Gamma(K^+\eta'(958))/\Gamma(\eta'(958)\pi^+)$ $\Gamma_{162}/\Gamma_{131}$ VALUE (%) EVTS DOCUMENT ID TECN COMMENT 3.7 ±0.4 OUR FIT 11 BELL $e^+e^- \approx \Upsilon(4S)$ $3.77 \pm 0.39 \pm 0.10$ 180 ± 19 WON

$\Gamma(K^+ 2\pi^0)/\Gamma_{\text{total}}$				Г ₁₆₃ /Г
VALUE (units 10^{-4})	EVTS	DOCUMENT ID	TECN	COMMENT
2.1±0.4±0.1	43	ABLIKIM	22BK BES3	e^+e^- at 3.773 GeV
$\Gamma(K^*(892)^+\pi^0)/I$	total			Г ₁₆₄ /Г
VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID	TECN	COMMENT
$3.4^{+1.4}_{-1.3}\pm 0.1$	17	¹ ABLIKIM	22BK BES3	e^+e^- at 3.773 GeV

¹ ABLIKIM 22BK report a 2.7 σ significance for the observation of this decay and assign an upper limit for this branching fraction of 5.4 × 10⁻⁴ at 90% CL. In their analysis, ABLIKIM 22BK assume negligible interference between $D^+ \rightarrow K^{*+}\pi^0 \rightarrow K^+\pi^0\pi^0$ and the non-resonant decay to the same final state.

Г(К	$+\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{+$	r)/Γ(<i>K</i> 2	$2\pi^{+})$				Γ ₁₆₅ /Γ ₅₂
VALU	E (units 1	0 ⁻³)	EVTS	DOCUMENT ID		TECN	COMMENT
5.238	3±0.02	5 OUR AVER	AGE				
5.231	1 ± 0.009	0 ± 0.023	795k	AAIJ	19 G	LHCB	pp at 8 TeV
5.69	± 0.18	± 0.14	2638 ± 84	KO	09	BELL	e^+e^- at $arphi(4S)$
6.5	± 0.8	± 0.4	189 ± 24	LINK	04F	FOCS	γ A, $\overline{E}_{\gamma} pprox$ 180 GeV
7.7	± 1.7	± 0.8	59 ± 13	AITALA	97 C	E791	π^- A, 500 GeV
7.2	± 2.3	± 1.7	21	FRABETTI	95E	E687	$\gamma{ m Be},\ \overline{E}_{\gamma}{=}$ 220 GeV

$$\frac{\Gamma(K^+\rho^0)}{\Gamma(K^+\pi^+\pi^-)}$$
This is the "fit fraction" from the Dalitz-plot analysis.

VALUE			DOCUMENT ID		TECN	COMMENT
0.39 ±	0.09	OUR AVER	AGE			
$0.3943\pm$	0.0787	± 0.0815	LINK	04F	FOCS	Dalitz fit, 189 evts
0.37 \pm	0.14	± 0.07	AITALA	97 C	E791	Dalitz fit, 59 evts

$\Gamma(K^+\eta\pi^0)/\Gamma_{\rm total}$

(,),				,
VALUE (units 10^{-4})	EVTS	DOCUMENT ID	TECN	COMMENT
$2.1 {\pm} 0.5 {\pm} 0.1$	19	ABLIKIM	22BK BES3	e^+e^- at 3.773 GeV
$\Gamma(K^*(892)^+\eta)/\Gamma_{tot}$	tal			Г ₁₆₈ /Г

(ULAI			- 100/ -
VALUE (units 10^{-4})	EVTS	DOCUMENT ID	TECN	COMMENT
$4.4^{+1.8}_{-1.5}\pm0.2$	11	¹ ABLIKIM	22BK BES3	e^+e^- at 3.773 GeV

¹ABLIKIM 22BK report a 3.2 σ significance for the observation of this decay mode. In their analysis, ABLIKIM 22BK assume negligible interference between $D^+ \rightarrow K^{*+} \eta \rightarrow K^+ \eta \pi^0$ and the non-resonant decay to the same final state.

$\Gamma(K^*(892)^0\pi^+, K^*(892)^0 \to K^+\pi^-)/\Gamma(K^+\pi^+\pi^-) \qquad \Gamma_{169}/\Gamma_{165}$ This is the "fit fraction" from the Dalitz-plot analysis.

	11110 10 11	ie ne naccio	in noin the Dui	THE PIL	or analys	
VALUE			DOCUMENT ID		TECN	COMMENT
0.47	±0.08	OUR AVER	AGE			
0.5220	± 0.0684	\pm 0.0638	LINK	04F	FOCS	Dalitz fit, 189 evts
0.35	± 0.14	± 0.01	AITALA	97 C	E791	Dalitz fit, 59 evts

https://pdg.lbl.gov

 $\Gamma_{166}/\Gamma_{165}$

 Γ_{167}/Γ

$\Gamma(K^+ f_0(980), f_0(980) \rightarrow \pi^+ \pi^-) / \Gamma(K^+ \pi^+ \pi^-)$						
I his is the fit fractio	n from the I	Jalitz-plot	anaiys FCN	SIS. COMMEN	νT	
$0.0892 \pm 0.0333 \pm 0.0412$		04F F(Dalitz fi	it 189 evts	
			005	Dantz h	10, 105 0013	
$\Gamma(K_2^*(1430)^0\pi^+, K_2^*(1430)^0\pi^+)$	$(30)^0 \rightarrow K^-$	⁺ π ⁻)/Γ((Κ + π	$(+\pi^{-})$		$\Gamma_{171}/\Gamma_{165}$
I his is the fit fractio	n from the I	Jalitz-plot	anaiys FCN	SIS. COMMEN	νT	
0.0803±0.0372±0.0391	LINK	04F F	OCS	Dalitz fi	it, 189 evts	
$\Gamma(K^+\pi^+\pi^-\text{ nonresonar})$ This is the "fit fractic VALUE	n" from the I DOC	+π ⁻) Dalitz-plot TUMENT ID	analys	is. TECN	COMMENT	Γ ₁₇₂ /Γ ₁₆₅
• • • We do not use the fo	llowing data f	or averages	s, fits,	limits, e	etc. • • •	
$0.36 \pm 0.14 \pm 0.07$	¹ AIT	ALA	97C	E791	Dalitz fit, 5	9 evts
¹ LINK 04F, with three tir	nes as many e	events, find	ls no r	eed for	a nonresona	nt amplitude.
$\Gamma(\kappa^+\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$						Г1 7 2 /Г
$VALUE$ (units 10^{-3}) EV	TS DOC	UMENT ID		TECN	COMMENT	• 1/5/ •
$121 \pm 0.08 \pm 0.03$ 3	50 ¹ ARI		207	RES3	a^+a^- at 3	2773 MeV
¹ ABLIKIM 20Z subtracted	ed the knowr	n branching	g fract	ions of	$D^+ \rightarrow K$	$^+\eta$, $D^+ \rightarrow$
¹ ABLIKIM 20Z subtractor $K^+ \phi$, and $D^+ \rightarrow K^{\neg}$ noring interference effect $K^+ \pi^+ \pi^- \pi^0$ non-reson	ed the knowr ω to obtain cts and possi ant) = (1.13	branching an estima ble additic \pm 0.08 \pm 0	g fract te of t onal re 0.03) 1	tions of the non- esonant × 10 ⁻³ .	$D^+ \rightarrow K$ resonant co contribution	$^+\eta$, $D^+ \rightarrow$ mponent (ig- s) B($D^+ \rightarrow$
¹ ABLIKIM 20Z subtractor $K^+ \phi$, and $D^+ \to K^-$ noring interference effect $K^+ \pi^+ \pi^- \pi^0$ non-reson $\Gamma(K^+ \pi^+ \pi^- \pi^0)/\Gamma(K^-)$	ed the knowr ω to obtain cts and possi ant) = (1.13 $2\pi^+\pi^0$)	branching an estimat ble additic \pm 0.08 \pm 0	g fract te of t onal re 0.03)	tions of the non- sonant × 10 ⁻³ .	$D^+ \rightarrow K$ resonant co contribution	$^+\eta, D^+ \rightarrow$ mponent (ig- s) B($D^+ \rightarrow$ Γ_{173}/Γ_{75}
¹ ABLIKIM 20Z subtractor $K^+\phi$, and $D^+ \to K^-$ noring interference effect $K^+\pi^+\pi^-\pi^0$ non-reson $\Gamma(K^+\pi^+\pi^-\pi^0)/\Gamma(K^-)$ <u>VALUE (units 10⁻²)</u>	ed the known ω to obtain cts and possi ant) = (1.13 $2\pi^+\pi^0$) <u>DOC</u>	b branching an estima ble additic ± 0.08 ± 0 CUMENT ID	g fract te of t onal re 0.03) :	tions of the non- sonant $\times 10^{-3}$.	$D^+ \rightarrow K$ resonant co contribution <u>COMMENT</u>	$^+\eta, D^+ \rightarrow$ mponent (ig- s) B(D ⁺ \rightarrow Γ_{173}/Γ_{75}
¹ ABLIKIM 20Z subtractor $K^+ \phi$, and $D^+ \rightarrow K^-$ noring interference effect $K^+ \pi^+ \pi^- \pi^0$ non-reson $\Gamma(K^+ \pi^+ \pi^- \pi^0)/\Gamma(K^-$ <u>VALUE (units 10⁻²)</u> EV 1.68±0.11±0.03 3.	ed the knowr ω to obtain cts and possi ant) = (1.13 $2\pi^+\pi^0$) $\frac{TS}{DOC}$ δk LI	n branching an estima ble additic ± 0.08 ± 1 CUMENT ID	g fract te of t onal re 0.03) : 23G	tions of the non- sonant × 10 ⁻³ . <u>TECN</u> BELL	$D^+ \rightarrow K$ resonant co contribution $\frac{COMMENT}{e^+e^- \operatorname{at/n}}$ n=1,,5	$\eta, D^+ \rightarrow$ mponent (ig- s) $B(D^+ \rightarrow \Gamma_{173}/\Gamma_{75}$ mear $\Upsilon(nS), \overline{D}$
¹ ABLIKIM 20Z subtractor $K^+ \phi$, and $D^+ \rightarrow K^-$ noring interference effect $K^+ \pi^+ \pi^- \pi^0$ non-reson $\Gamma(K^+ \pi^+ \pi^- \pi^0)/\Gamma(K^-$ <u>VALUE (units 10⁻²)</u> <u>EV</u> 1.68±0.11±0.03 3. $\Gamma(K^+ \pi^+ \pi^- \pi^0 \text{ nonreson})$	the known ω to obtain Δto ob	i branching an estima ble additic ± 0.08 ± 1 FUMENT ID	g fract te of t onal re 0.03) : 23G	tions of the non- sonant $\times 10^{-3}$. <u>TECN</u> BELL	$D^+ \rightarrow K$ resonant co contribution $\frac{COMMENT}{e^+e^- \operatorname{at/n}}$ n=1,,	$\uparrow^+ \eta, D^+ \rightarrow$ mponent (ig- s) B($D^+ \rightarrow$ Γ_{173}/Γ_{75} mear $\Upsilon(nS),$ Γ_{174}/Γ
¹ ABLIKIM 20Z subtractor $K^+ \phi$, and $D^+ \rightarrow K^-$ noring interference effect $K^+ \pi^+ \pi^- \pi^0$ non-reson $\Gamma(K^+ \pi^+ \pi^- \pi^0)/\Gamma(K^-$ <u>VALUE (units 10^2)</u> <u>EV</u> 1.68±0.11±0.03 3.1 $\Gamma(K^+ \pi^+ \pi^- \pi^0$ nonreson <u>VALUE (units 10^3)</u> EV	and the known ω to obtain ant) = (1.13 $2\pi^+\pi^0$) TS <u>DOC</u> DOC	n branching an estima ble additic ± 0.08 ± 1 <u>CUMENT ID</u>	g fract te of t onal re 0.03)	tions of the non- esonant $\times 10^{-3}$. <u>TECN</u> BELL	$D^+ \rightarrow K$ resonant co contribution $\frac{COMMENT}{e^+e^- at/r}$ n=1,,! COMMENT	$\eta, D^+ \rightarrow$ mponent (ig- s) $B(D^+ \rightarrow \Gamma_{173}/\Gamma_{75}$ mear $\Upsilon(nS),$ Γ_{174}/Γ
¹ ABLIKIM 20Z subtractor $K^+ \phi$, and $D^+ \rightarrow K^-$ noring interference effect $K^+ \pi^+ \pi^- \pi^0$ non-reson $\Gamma(K^+ \pi^+ \pi^- \pi^0)/\Gamma(K^-$ <u>VALUE (units 10^2)</u> <u>EV</u> 1.68±0.11±0.03 3. $\Gamma(K^+ \pi^+ \pi^- \pi^0$ nonreson <u>VALUE (units 10^3)</u> <u>EV</u> 1.10±0.07 OUR AVERAGE	ed the known ω to obtain ets and possi ant) = (1.13 $2\pi^+\pi^0$) $\frac{TS}{DOC}$ δk LI mant)/ Γ_{tota} TS DOC	n branching an estima ble additic ± 0.08 ± 0 <u>CUMENT ID</u>	g fract te of f onal re 0.03) : 23G	tions of the non- sonant $\times 10^{-3}$. $\frac{TECN}{BELL}$	$D^+ \rightarrow K$ resonant co contribution $\frac{COMMENT}{e^+e^- \operatorname{at/n}_{n=1,,!}}$ $\underline{COMMENT}$	$\eta, D^+ \rightarrow$ mponent (ig- s) $B(D^+ \rightarrow \Gamma_{173}/\Gamma_{75}$ mear $\Upsilon(nS),$ Γ_{174}/Γ
¹ ABLIKIM 20Z subtractor $K^+ \phi$, and $D^+ \rightarrow K^-$ noring interference efference interference efference $K^+ \pi^+ \pi^- \pi^0$ non-reson $\Gamma(K^+ \pi^+ \pi^- \pi^0)/\Gamma(K^-$ <u>VALUE (units 10^-2)</u> <u>EV</u> 1.68±0.11±0.03 3. $\Gamma(K^+ \pi^+ \pi^- \pi^0$ nonreson <u>VALUE (units 10^-3)</u> <u>EV</u> 1.10±0.07 OUR AVERAGE 1.03±0.12±0.06 1	the known ω to obtain Δto ob	n branching an estima ble additic ± 0.08 ± 1 CUMENT ID	g fract te of f onal re 0.03) 23G 21BB	tions of the non- sonant $\times 10^{-3}$. <u>TECN</u> BELL <u>TECN</u> BES3	$D^{+} \rightarrow K$ resonant co contribution $\frac{COMMENT}{e^{+}e^{-} \text{ at/r}}$ $\frac{COMMENT}{e^{+}e^{-} \text{ at } 3}$	$^+\eta, D^+ \rightarrow$ mponent (ig- s) B($D^+ \rightarrow$ Γ_{173}/Γ_{75} mear $\Upsilon(nS),$ Γ_{174}/Γ 8.773 GeV
¹ ABLIKIM 20Z subtractor $K^+ \phi$, and $D^+ \rightarrow K^-$ noring interference effect $K^+ \pi^+ \pi^- \pi^0$ non-reson $\Gamma(K^+ \pi^+ \pi^- \pi^0)/\Gamma(K^-$ <u>VALUE (units 10⁻²)</u> <u>EV</u> 1.68±0.11±0.03 3. $\Gamma(K^+ \pi^+ \pi^- \pi^0$ nonreson <u>VALUE (units 10⁻³)</u> <u>EV</u> 1.10±0.07 OUR AVERAGE 1.03±0.12±0.06 1 1.13±0.08±0.03 3.	ed the known ω to obtain cts and possi ant) = (1.13 $2\pi^+\pi^0$) TS DOC bk LI mant)/ Γ_{tota} TS DOC $12 ^1 ABL 50 ^2 ABL$	n branching an estima ble additic ± 0.08 ± 1 <u>CUMENT ID</u> UMENT ID LIKIM	g fract te of f onal re 0.03) 23G 23G 21BB 20Z	tions of the non- sonant × 10 ⁻³ . <u>TECN</u> BELL <u>TECN</u> BES3 BES3	$D^+ \rightarrow K$ resonant co contribution $\frac{COMMENT}{e^+e^- \text{ at }/r}$ $\frac{COMMENT}{e^+e^- \text{ at } 3}$ $e^+e^- \text{ at } 3$	$\eta, D^+ \rightarrow$ mponent (ig- s) B($D^+ \rightarrow$ Γ_{173}/Γ_{75} mear $\Upsilon(nS),$ Γ_{174}/Γ 8.773 GeV 8.773 GeV
¹ ABLIKIM 20Z subtractor $K^+ \phi$, and $D^+ \rightarrow K^-$ noring interference effect $K^+ \pi^+ \pi^- \pi^0$ non-reson $\Gamma(K^+ \pi^+ \pi^- \pi^0)/\Gamma(K^-$ <u>VALUE (units 10⁻²)</u> <u>EV</u> 1.68±0.11±0.03 3. $\Gamma(K^+ \pi^+ \pi^- \pi^0$ nonreson <u>VALUE (units 10⁻³)</u> <u>EV</u> 1.10±0.07 OUR AVERAGE 1.03±0.12±0.06 1 1.13±0.08±0.03 3. ¹ ABLIKIM 21BB result her $D^+ \rightarrow K^+ \phi$, and D^+ including these compon 0.12) × 10 ⁻³ , where ther ² ABLIKIM 20Z result har $D^+ \rightarrow K^+ \phi$, and D^+ these components is me	ed the known ω to obtain cts and possi- ant) = (1.13 $2\pi^+\pi^0$) TS <u>DOC</u> δk LI mant)/ Γ_{tota} TS <u>DOC</u> 12 1 ABL 50 2 ABL as subtracted $\rightarrow K^+\omega$ res- ents is measured $\omega K^+\omega$, asured to be a	b branching an estima ble additic $\pm 0.08 \pm 0$ <u>CUMENT ID</u> <u>CUMENT ID</u> LIKIM LIKIM the known sonances (ig ured to be is statistica the known ignoring in (1.21 \pm 0.0	g fract te of formal re- 0.03 (1) 23G 21BB 20Z 1 brance 20Z 1 brance 1 only 10^{+1} 10^{-1} 10^{-1} 10^{-1}	tions of the non- sonant $\times 10^{-3}$. \underline{TECN} BELL \underline{TECN} BES3 BES3 ching fra g interfe $\rightarrow K$ thing fra ence effe 0.03) $\times 1$	$D^+ \rightarrow K$ resonant co contribution $\frac{COMMENT}{e^+e^- \text{ at }/n}$ $e^+e^- \text{ at } 3$ $e^+e^- \text{ at } 3$ $e^+e^- \text{ at } 3$ actions of D rence effects $+\pi^+\pi^-\pi^0$ ctions of D^2 cts. The res 0^{-3} .	$ \begin{array}{l} + \eta, \ D^{+} \rightarrow \\ \text{mponent (ig-}\\ \text{s) } B(D^{+} \rightarrow \\ \hline \Gamma_{173}/\Gamma_{75} \\ \hline \Gamma_{173}/\Gamma_{75} \\ \hline \Gamma_{174}/\Gamma \\ \hline \end{array} $

				- 113/
VALUE (units 10 ⁻⁵)	EVTS	DOCUMENT ID	TECN	COMMENT
$5.7^{+2.5}_{-2.1}\pm0.2$	9	ABLIKIM	20z BES3	e ⁺ e ⁻ , 3773 MeV

https:	//	pdg.	lbl	l.gov
neepo.	/ /	P ~ D.		

$\Gamma(2K^+K^-)/\Gamma(K^-2)$	$\pi^+)$				Γ ₁₇₆ /Γ ₅₂
VALUE (units 10^{-4}) EV	/TS D	OCUMENT ID	Т	ECN C	OMMENT
6.54 ±0.05 OUR AVE	RAGE				
$6.541 \pm 0.025 \pm 0.042$ 13	34k _A	AIJ	19G LI	НСВ р	p at 8 TeV
$9.49 \pm 2.17 \pm 0.22$	65 ¹ L	INK	021 F	OCS γ	nucleus, $pprox$ 180 GeV
¹ LINK 021 finds little	evidence for	$f \phi K^+$ or $f_0(9)$	80) <i>K</i> +	submod	des.
$\Gamma(K^+\phi(1020), \phi \rightarrow$	$K^+K^-)/$	/Γ(2 <i>K</i> + <i>K</i> -)			Γ ₁₇₈ /Γ ₁₇₆
VALUE (%)		DOCUMENT ID)	TECN	COMMENT
7.1±0.9		¹ AAIJ	19H	LHCB	<i>pp</i> at 8TeV
¹ Fit fraction from a D tainty is due to the a)alitz plot a Implitude m	nalysis of <i>D</i> + nodel.	$\rightarrow K^+$	- K+ K-	[–] decays. The last uncer-
$\Gamma(K^+(K^+K^-)_{S-wo})$	_{we})/Г(2И	K+K-) DOCUMENT ID)	TECN	Γ ₁₇₉ /Γ ₁₇₆ _{COMMENT}
0.94±0.01		¹ AAIJ	19н	LHCB	pp at 8TeV
1 Fit fraction from a D)alitz plat a	nalysis of D^+		- k + k -	- decays The last uncer
tainty is due to the a	amplitude m	nodel.	$\rightarrow \Lambda$	K K	uecays. The last uncer-
,	_				
	- Rare	e or forbidde	n mod	es —	
$\Gamma(\pi^+e^+e^-)/\Gamma_{\text{total}}$	- 1 wool		at All	awad by	F ₁₈₀ /F
interactions	= 1 wear	c neutral currel	nt. And	Swed by	nigher-order electroweak
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<1.1 × 10 ⁻⁶	90	LEES	11G	BABR	$e^+e^-pprox ~\Upsilon(4S)$
$\bullet \bullet \bullet$ We do not use the	e following o	data for averag	es, fits,	limits, e	etc. • • •
$< 1.6 \times 10^{-6}$	90	AAIJ	21T	LHCB	1.6 fb $^{-1}$ pp
$< 5.9 \times 10^{-6}$	90	¹ RUBIN	10	CLEO	e^+e^- at $\psi(3770)$
$< 7.4 \times 10^{-6}$	90	HE	05A	CLEO	See RUBIN 10
$< 5.2 \times 10^{-5}$	90	AITALA	99 G	E791	π^- N 500 GeV
$< 1.1 \times 10^{-4}$	90	FRABETTI	97 B	E687	γ Be, $\overline{E}_{\gamma}pprox$ 220 GeV
$< 6.6 \times 10^{-5}$	90	AITALA	96	E791	π^- N 500 GeV
$< 2.5 \times 10^{-3}$	90	WEIR	90 B	MRK2	e ⁺ e ⁻ 29 GeV
$< 2.6 \times 10^{-3}$	90	HAAS	88	CLEO	e^+e^- 10 GeV
¹ This RUBIN 10 limit See the next data blo	: is for the ock.	e ⁺ e ⁻ mass in	the co	ontinuun	n away from the $\phi(1020).$
$\Gamma(\pi^+\pi^0 e^+ e^-)/\Gamma_{\rm tot}$	al		,	TECN	Г ₁₈₁ /Г
<u>VALUE</u>	<u>_ CL%</u>	DOCUMENT IL	,	<u>TECN</u>	
<1.4 × 10 ⁻³	90	ABLIKIM	18P	BES3	e⊤e⁻, 3773 MeV
$\Gamma(\pi^+\phi,\phi\to e^+e^-)$ This is <i>not</i> a test	$/\Gamma_{total}$ for the ΔC	$\tilde{c}=1$ weak net	ıtral cu	rrent, bı	
final state. <u>VALUE</u>	EVTS	DOCUMENT	- ID	TECI	N <u>COMMENT</u>
$(1.7^{+1.4}_{-0.9}\pm0.1)\times10^{-6}$	4	¹ RUBIN	10) CLE	$0 e^+e^-$ at $\psi(3770)$
• • • We do not use the	e following o	data for averag	es, fits,	limits, e	etc. ● ● ●
$(2.7^{+3.6}_{-1.8}{\pm}0.2)\times10^{-6}$	2	HE	05	5A CLE	O See RUBIN 10
https://pdg.lbl.gov		Page 43		Creat	ted: 7/25/2024 17:21

¹This RUBIN 10 result is consistent with the known $D^+ o \phi \pi^+$ and $\phi o e^+ e^$ fractions.

$\Gamma(\pi^+\mu^+\mu^-)/\Gamma_{\text{total}}$ A test for the $\Delta C = 1$ weak neutral current. Allowed by higher-order electroweak

interacti	ons.				
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<6.7 × 10 ⁻⁸	90	AAIJ	21⊤	LHCB	1.6 fb $^{-1}$ pp
• • • We do r	not use the	following data for a	verag	es, fits,	limits, etc. • • •
$< 7.3 \times 10^{-8}$	90	AAIJ	13AF	LHCB	<i>pp</i> at 7 TeV
$< 6.5 \times 10^{-6}$	90	LEES	11G	BABR	$e^+e^-pprox~\Upsilon(4S)$
$< 3.9 \times 10^{-6}$	90	¹ ABAZOV	08 D	D0	$p\overline{p}, E_{cm} = 1.96 \text{ TeV}$
$< 8.8 \times 10^{-6}$	90	LINK	03F	FOCS	γ A, $\overline{E}_{\gamma}^{\sim} \approx 180$ GeV
$< 1.5 \times 10^{-5}$	90	AITALA	99 G	E791	π^- N 500 GeV
$< 8.9 imes 10^{-5}$	90	FRABETTI	97 B	E687	γ Be, $\overline{\textit{E}}_{\gamma} pprox $ 220 GeV
$< 1.8 \times 10^{-5}$	90	AITALA	96	E791	π^- N 500 GeV
$< 2.2 \times 10^{-4}$	90	KODAMA	95	E653	π^- emulsion 600 GeV
$< 5.9 \times 10^{-3}$	90	WEIR	90 B	MRK2	e ⁺ e ⁻ 29 GeV
$<\!\!2.9 imes10^{-3}$	90	HAAS	88	CLEO	e^+e^- 10 GeV

¹ This ABAZOV 08D limit is for the $\mu^+\mu^-$ mass in the continuum away from the $\phi(1020)$. See the next data block.

$\Gamma(\pi^+\phi, \phi \to \mu^+\mu^-)/\Gamma_{\text{total}}$

Γ_{184}/Γ

Г₁₈₆/Г

This is *not* a test for the $\Delta C = 1$ weak neutral current, but leads to the $\pi^+ \mu^+ \mu^$ final state.

VALUE	DOCUMENT ID		TECN	COMMENT
$(1.8\pm0.5\pm0.6)\times10^{-6}$	¹ ABAZOV	08 D	D0	$p \overline{p}, E_{cm} = 1.96 \text{ TeV}$
1 .			1	1

¹This ABAZOV 08D value is consistent with the known $D^+ \to \phi \pi^+$ and $\phi \to \mu^+ \mu^$ fractions.

$\Gamma(ho^+\mu^+\mu^-)/\Gamma_{total}$						Г ₁₈₅ /Г
A test for the ΔC	$\Gamma=1$ weak	neutral current	. Alle	owed by	higher-order	electroweak
interactions.						
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
$< 5.6 \times 10^{-4}$	90	KODAMA	95	E653	π^- emulsion	600 GeV

$\Gamma(K^+e^+e^-)/\Gamma_{\text{total}}$

Both quarks would have to change flavor for this decay to occur.

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<8.5 × 10 ⁻⁷	90	AAIJ	21⊤	LHCB	1.6 fb ⁻¹ pp
$\bullet~\bullet~\bullet$ We do not use the	following d	ata for averages	, fits,	limits, e	tc. • • •
$< 1.0 \times 10^{-6}$	90	LEES	11G	BABR	$e^+e^-pprox \Upsilon(4S)$
$< 3.0 \times 10^{-6}$	90	RUBIN	10	CLEO	e^+e^- at $\psi($ 3770 $)$
$< 6.2 \times 10^{-6}$	90	HE	05A	CLEO	See RUBIN 10
$< 2.0 \times 10^{-4}$	90	AITALA	99 G	E791	π^- N 500 GeV
$< 2.0 \times 10^{-4}$	90	FRABETTI	97 B	E687	γ Be, $\overline{E}_{\gamma}pprox$ 220 GeV
$< 4.8 \times 10^{-3}$	90	WEIR	90 B	MRK2	$e^+ e^- 29$ GeV

$\Gamma(K^+\pi^0e^+e^-)/\Gamma$	total				Г ₁₈₇ /Г
VALUE	<u>CL%</u>	DOCUMENT ID)	TECN	COMMENT
<1.5 × 10 ⁻⁵	90	ABLIKIM	18P	BES3	e ⁺ e ⁻ , 3773 MeV
$\Gamma(K^0_{S}\pi^+e^+e^-)/I$	total				Г ₁₈₈ /Г
VALUE	<u>CL%</u>	<u>DOCUMENT IE</u>)	TECN	COMMENT
<2.6 × 10 ⁻⁵	90	ABLIKIM	18P	BES3	e ⁺ e ⁻ , 3773 MeV
$\frac{\Gamma(K_S^0 K^+ e^+ e^-)}{VALUE}$	F _{total}	DOCUMENT I)	TECN	Γ ₁₈₉ /Γ
<1.1 × 10 ⁻⁵	90	ABLIKIM	18P	BES3	e ⁺ e ⁻ , 3773 MeV
$\Gamma(K^+, \mu^+, \mu^-)/\Gamma$					Г100/Г
Both quarks we	tal ould have to	change flavor for	this de	cay to c	• 190/ • occur.
VALUE	<u>CL%</u>	DOCUMENT ID	Т	ECN C	COMMENT
<5.4 × 10 ⁻⁸	90	AAIJ	21⊤ L	HCB 1	6 fb ⁻¹ pp
• • • We do not use	the followin	ig data for averag	es, fits,	limits, e	etc. • • •
$<4.3 \times 10^{-0}$	90	LEES	11G B	ABR e	$e^+e^-\approx \Upsilon(4S)$
$< 9.2 \times 10^{-0}$	90	LINK	03F F	OCS γ	$_{\gamma}$ A, $E_{\gamma} pprox$ 180 GeV
$<4.4 \times 10^{-5}$	90	AITALA	99g E	791 π	r [—] N <u>5</u> 00 GeV
$< 9.7 \times 10^{-5}$	90	FRABETTI	97B E	.687 γ	$_{\gamma}$ Be, $E_{\gamma}pprox$ 220 GeV
$< 3.2 \times 10^{-4}$	90	KODAMA	95 E	653 π	r_ emulsion 600 GeV
$< 9.2 \times 10^{-3}$	90	WEIR	90b N	1RK2 e	e ⁺ e ⁻ 29 GeV
$\Gamma(\pi^+ e^+ \mu^-) / \Gamma_{\text{tot}}$	al n-family-nun	nber conservation			Г ₁₉₁ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<2.1 × 10 ⁻⁷	90	AAIJ	21T	LHCB	1.6 fb $^{-1}$ pp
• • • We do not use	the followin	ig data for averag	es, tits,	limits, e	etc. • • •
$<2.9 \times 10^{-0}$	90	LEES	11G	BABR	$e^{+}e^{-} \approx T(4S)$
<1.1 × 10 ⁻¹	90	FRABETTI	97B	E087	γ Be, $E_{\gamma} \approx 220$ GeV
$<3.3 \times 10^{-5}$	90	WEIR	90 B	MRK2	<i>e</i> ⊤ <i>e</i> ¯ 29 GeV
$\Gamma(\pi^+ e^- \mu^+) / \Gamma_{\text{tot}}$ A test of leptor	al 1-family-nun	nber conservation			Г ₁₉₂ /Г
VALUE	CL%	<u>DOCUMENT ID</u>		TECN	COMMENT
$< 2.2 \times 10^{-7}$	90	AAIJ	21T	LHCB	1.6 fb $^{-1}$ pp
• • • We do not use	the followin	ig data for averag	es, fits,	limits, e	etc. • • •
$<3.6 \times 10^{-6}$	90	LEES	11G	BABR	$e^+e^- \approx \Upsilon(4S)$
$< 1.3 \times 10^{-4}$	90	FRABETTI	97 B	E687	γ Be, $\overline{E}_{\gamma}pprox$ 220 GeV
$< 3.3 \times 10^{-3}$	90	WEIR	90 B	MRK2	e ⁺ e ⁻ 29 GeV
$\frac{\Gamma(K^+e^+\mu^-)}{F_{\text{tot}}}$	t al n-family-nun	nber conservation			Г ₁₉₃ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
< 7.5 × 10⁻⁸ • • • We do not use	90 the followin	AAIJ Ig data for averag	21⊤ es. fits.	LHCB limits.	1.6 fb ⁻¹ pp etc. • • •
<1.2 × 10 ⁻⁶	۵۸	I FFS	110	RARP.	$e^+e^- \approx \gamma(\Lambda \varsigma)$
$< 1.2 \times 10^{-4}$	90	FRARFTTI	97R	F687	$\gamma \text{ Be, } \overline{F} \approx 220 \text{ GeV}$
$<3.4 \times 10^{-3}$	90	WEIR	90в	MRK2	e^+e^- 29 GeV
https://pdg.lbl.gov	J	Page 45		Creat	ted: 7/25/2024 17:21

$\Gamma(K^+ e^- \mu^+) / \Gamma_{total}$

A test of lepton-family-number conservation.								
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT			
<1.0 × 10 ⁻⁷	90	AAIJ	21T	LHCB	1.6 fb $^{-1}$ pp			
\bullet \bullet \bullet We do not use the	e following o	data for averages	s, fits,	limits, e	etc. • • •			
$<\!\!2.8 imes 10^{-6}$	90	LEES	11G	BABR	$e^+e^-pprox~\Upsilon(4S)$			
$< 1.2 \times 10^{-4}$	90	FRABETTI	97 B	E687	γ Be, $\overline{E}_{\gamma}pprox$ 220 GeV			
$< 3.4 \times 10^{-3}$	90	WEIR	90 B	MRK2	e ⁺ e ⁻ 29 GeV			

 $\Gamma(\pi^{-}2e^{+})/\Gamma_{\text{total}}$ A test of lepton-number conservation.

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<5.3 × 10 ⁻⁷	90	AAIJ	21T	LHCB	1.6 fb $^{-1}$ <i>pp</i>
• • • We do not use the	following d	ata for averages	, fits,	limits, e	tc. • • •
$< 1.9 imes 10^{-6}$	90	LEES	11G	BABR	$e^+e^-pprox \Upsilon(4S)$
$< 1.1 \times 10^{-6}$	90	RUBIN	10	CLEO	e^+e^- at ψ (3770)
$< 3.6 \times 10^{-6}$	90	HE	05A	CLEO	See RUBIN 10
$< 9.6 \times 10^{-5}$	90	AITALA	99 G	E791	π^- N 500 GeV
$< 1.1 \times 10^{-4}$	90	FRABETTI	97 B	E687	γ Be, $\overline{E}_{\gamma}pprox$ 220 GeV
$< 4.8 \times 10^{-3}$	90	WEIR	90 B	MRK2	e^+e^- 29 GeV

 $\Gamma(\pi^{-}2\mu^{+})/\Gamma_{\text{total}}$ A test of lepton-number conservation.

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<1.4 × 10 ⁻⁸	90	AAIJ	21⊤	LHCB	1.6 fb ⁻¹ <i>pp</i>
$\bullet \bullet \bullet$ We do not use the	following d	ata for averages	, fits,	limits, e	tc. ● ● ●
$< 2.2 \times 10^{-8}$	90	AAIJ	13AF	LHCB	<i>pp</i> at 7 TeV
$< 2.0 \times 10^{-6}$	90	LEES	11G	BABR	$e^+e^-pprox \Upsilon(4S)$
$< 4.8 \times 10^{-6}$	90	LINK	03F	FOCS	γ A, $\overline{\textit{E}}_{\gamma} pprox$ 180 GeV
$< 1.7 \times 10^{-5}$	90	AITALA	99 G	E791	π^- N 500 GeV
$< 8.7 \times 10^{-5}$	90	FRABETTI	97 B	E687	γ Be, $\overline{E}_{\gamma} pprox ~$ 220 GeV
$< 2.2 \times 10^{-4}$	90	KODAMA	95	E653	π^- emulsion 600 GeV
$< 6.8 \times 10^{-3}$	90	WEIR	90 B	MRK2	e^+e^- 29 GeV

$\Gamma(\pi^{-}e^{+}\mu^{+})/\Gamma_{\text{total}}$ A test of lepton-number conservation

A lest of lepton-nu	mber conse	rvation.			
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<1.3 × 10 ⁻⁷	90	AAIJ	21⊤	LHCB	1.6 fb $^{-1}$ pp
$\bullet \bullet \bullet$ We do not use the	following d	ata for averages	, fits,	limits, e	tc. ● ● ●
$< 2.0 \times 10^{-6}$	90	LEES	11G	BABR	$e^+e^-pprox \Upsilon(4S)$
$< 5.0 \times 10^{-5}$	90	AITALA	99 G	E791	π^- N 500 GeV
$< 1.1 \times 10^{-4}$	90	FRABETTI	97 B	E687	γ Be, $\overline{E}_{\gamma}pprox$ 220 GeV
$< 3.7 \times 10^{-3}$	90	WEIR	90 B	MRK2	e^+e^- 29 GeV

Г₁₉₇/Г

$\Gamma(ho^{-}2\mu^{+})/\Gamma_{total}$ A test of lepton-r	number co	nservation.			Г ₁₉₈	/Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<5.6 × 10 ⁻⁴	90	KODAMA	95	E653	π^- emulsion 600 Ge	V
https://pdg.lbl.gov		Page 46		Crea	ted: 7/25/2024 17:	:21

Г₁₉₆/Г

Г₁₉₄/Г

Γ₁₉₅/Γ

A test of lepto	l n-number con	servation.			· 199/ ·
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<0.9 × 10 ⁻⁶	90	LEES	110	BABR	$e^+e^- \approx \Upsilon(4S)$
• • We do not use	the following	data for averages	s, fits,	limits, e	tc. ● ● ●
$< 3.5 \times 10^{-6}$	90	RUBIN	10	CLEO	e^+e^- at $\psi($ 3770 $)$
$<4.5 \times 10^{-6}$	90	HE	05A	CLEO	See RUBIN 10
$<1.2 \times 10^{-4}$	90	FRABETTI	97E	B E687	γ Be, $E_{\gamma} \approx 220$ GeV
$< 9.1 \times 10^{-3}$	90	WEIR	90e	B MRK2	2 e ⁺ e ⁻ 29 GeV
$\Gamma(\kappa_{\rm S}^0\pi^-2e^+)/\Gamma_{\rm t}$	otal				Г ₂₀₀ /Г
/ALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
$< 3.3 \times 10^{-6}$	90	ABLIKIM	19AL	BES3	e^+e^- at 3773 MeV
$(K^{-}\pi^{0}2e^{+})/\Gamma_{+}$	otal				Г201 /Г
ALUE	CL%	DOCUMENT ID		TECN	COMMENT
<8.5 × 10 ^{—6}	90	ABLIKIM	19AL	BES3	e^+e^- at 3773 MeV
$(K^- 2\mu^+)/\Gamma_{total}$	1				Γ ₂₀₂ /Γ
A test of lepto	• n-number con	servation.			/
/ALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<10 × 10 ⁻⁰	90	LEES	11G	BABR	$e^+e^- \approx \Upsilon(4S)$
• • We do not use	the following	; data for averages	s, fits,	limits, e	etc. ● ● ●
$< 1.3 \times 10^{-5}$	90	LINK	03F	FOCS	γ A, $E_{\underline{\gamma}} \approx 180$ GeV
$< 1.2 \times 10^{-4}$	90	FRABETTI	97 B	E687	γ Be, $E_\gamma pprox ~$ 220 GeV
$< 3.2 \times 10^{-4}$	90	KODAMA	95	E653	π^- emulsion 600 GeV
$< 4.3 \times 10^{-3}$	90	WEIR	90 B	MRK2	e ⁺ e ⁻ 29 GeV
$(K^-e^+\mu^+)/\Gamma_{to}$	tal				Г ₂₀₃ /Г
A test of lepto	n-number con	servation.		TECN	COMMENT
<1 9 x 10 ⁻⁶	<u> </u>	LEES	116	RARR	$e^+e^- \approx \Upsilon(4S)$
• • We do not use	the following	data for averages	s, fits,	limits, e	etc. • • •
$< 1.3 \times 10^{-4}$	90	FRABETTI	97 B	E687	γ Be, $\overline{E}_{\alpha} \approx 220$ GeV
$< 4.0 \times 10^{-3}$	90	WEIR	90 B	MRK2	e^+e^- 29 GeV
-(K*(802)-2,+)	/Г				Гео. /Г
A test of lepto	/ / ' total n-number con	servation.			· 204/ ·
ALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<8.5 × 10 ⁻⁴	90	KODAMA	95	E653	π^- emulsion 600 GeV
$(\Lambda e^+)/\Gamma_{\text{total}}$					Г ₂₀₅ /Г
ALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<1.1 × 10 ⁻⁶	90	ABLIKIM	20 D	BES3	e ⁺ e ⁻ , 3773 MeV
$(\overline{\Lambda}e^+)/\Gamma_{\text{total}}$					Г ₂₀₆ /Г
ALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<6.5 × 10 ⁻⁷	90	ABLIKIM	20 D	BES3	e ⁺ e ⁻ , 3773 MeV

Page 47

Citation: S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)

$\Gamma(\Sigma^0 e^+)/\Gamma_{\rm tot}$	al							Г ₂₀₇ /Г
VALUE		<u>CL%</u>	DOCUME	NT ID		TECN	COMMENT	
<1.7 × 10 ⁻⁶		90	ABLIKI	Μ	20 D	BES3	e ⁺ e ⁻ , 3773	MeV
$\Gamma(\overline{\Sigma}^0 e^+)/\Gamma_{\rm tot}$	al							Г ₂₀₈ /Г
VALUE		<u>CL%</u>	DOCUME	ENT ID		TECN	COMMENT	
$< 1.3 \times 10^{-6}$		90	ABLIKI	М	20 D	BES3	e ⁺ e ⁻ , 3773	MeV
$\Gamma(\overline{n}e^+)/\Gamma_{\text{total}}$								Г ₂₀₉ /Г
VALUE	<u>CL%</u>	DOCUN	1ENT ID	7	<i>TECN</i>	СОММ	ENT	
$< 1.43 \times 10^{-5}$	90	ABLIK	ΔM	22bj E	BES3	2.93fb	$^{-1}$ e^+e^- at	3.773 GeV
$\Gamma(ne^+)/\Gamma_{total}$								Г ₂₁₀ /Г
VALUE	<u>CL%</u>	DOCUN	1ENT ID	7	FECN	COMM	ENT	
$<2.91 \times 10^{-5}$	90	ABLIK	MI	22bj E	3ES3	2.93fb	$^{-1}$ e^+e^- at	3.773 GeV

D^{\pm} CP-VIOLATING DECAY-RATE ASYMMETRIES

This is the difference between D^+ and D^- partial widths for the decay to state f, divided by the sum of the widths: $A_{CP}(f) = [\Gamma(D^+ \to f) - \Gamma(D^- \to \overline{f})] / [\Gamma(D^+ \to f) + \Gamma(D^- \to \overline{f})].$

A _{CP} (μ [±] ν) i	n D+ -	$\rightarrow \mu^+ \nu_{\mu}$	$D^- \rightarrow \mu^- \overline{\nu}_{\mu}$	ı		
VALUE	(%)			DOCUMENT ID		TECN	COMMENT
+8±8	1			EISENSTEIN	08	CLEO	e^+e^- at $\psi(3770)$
A _{CP} ($K_L^0 e^{\pm i}$	ν) in <i>D</i> ⁺	$^{+} \rightarrow K_{L}^{0}$	$e^+ \nu_e, D^- \rightarrow$	K ⁰ L	$e^-\overline{\nu}_e$	
VALUE	(%)			DOCUMENT ID		TECN	COMMENT
-0.59	±0.60±	1.48		ABLIKIM	15A	F BES3	e^+e^- 3773 MeV
A _{CP} ($K_{S}^{0}\pi^{\pm}$) in D^{\pm}	$\rightarrow K_{S}^{0}\pi$	±			
VALUE	(%)		EVTS	DOCUMENT ID		TECN	COMMENT
-0.41	±0.09	our a	/ERAGE				
-1.1	± 0.6	± 0.2		BONVICINI	14	CLEO	All CLEO-c runs
-0.363	3 ± 0.094	4 ± 0.067	1738k ¹	l KO	12A	BELL	$e^+e^-pprox \Upsilon({\sf nS})$
-0.44	± 0.13	± 0.10	807k	DEL-AMO-SA.	11н	BABR	$e^+e^- \approx \Upsilon(4S)$
-1.6	± 1.5	± 0.9	10.6k ²	² LINK	0 2B	FOCS	γ nucleus, $\overline{E}_{\gamma} \approx 180 \text{ GeV}$
• • •	We do r	not use th	e following	data for average	s, fits	s, limits,	etc. • • •
-0.71	± 0.19	± 0.20		КО	10	BELL	See KO 12A
-1.3	± 0.7	± 0.3	30k	MENDEZ	10	CLEO	See BONVICINI 14
-0.6	± 1.0	± 0.3		DOBBS	07	CLEO	See MENDEZ 10
¹ KC asy zer) 12A fir vmmetry o.	nds that a due to th	after subtra ne change o	cting the contrib f charm is (-0.0)	oution)24 \pm	n due to = 0.094 ±	$K^0 - \overline{K}^0$ mixing, the <i>CP</i> ± 0.067)%, consistent with

²LINK 02B measures $N(D^+ \rightarrow K_S^0 \pi^+)/N(D^+ \rightarrow K^- \pi^+ \pi^+)$, the ratio of numbers of events observed, and similarly for the D^- .

$A_{CP}(K^0_L K^{\pm})$ in D	$^{\pm} \rightarrow K^{0}_{L}K$	'±			
VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
$-4.2\pm3.2\pm1.2$	650	ABLIKIM	19 M	BES3	e^+e^- at 3773 MeV
$A_{CP}(K^{\mp}2\pi^{\pm})$ in k	$D^+ \rightarrow K^-$	$2\pi^+$, $D^ ightarrow$	K+2	π^{-}	
VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT
-0.18 ± 0.16 OUR AV	/ERAGE				_
$-0.16 \pm 0.15 \pm 0.09$	2.3M	ABAZOV	14L	D0	$p \overline{p}, \sqrt{s} = 1.96 \text{ TeV}$
$-0.3 \pm 0.2 \pm 0.4$		BONVICINI	14	CLEO	All CLEO-c runs
• • • We do not use	the following	data for average	s, tits,	limits, e	etc. ● ● ●
$-0.1 \ \pm 0.4 \ \pm 0.9$	231k	MENDEZ	10	CLEO	See BONVICINI 14
$-0.5 \pm 0.4 \pm 0.9$		DOBBS	07	CLEO	See MENDEZ 10
$A_{CP}(K^{\mp}\pi^{\pm}\pi^{\pm}\pi^{0}$) in $D^+ \rightarrow$	$K^{-}\pi^{+}\pi^{+}\pi^{0}$), D-	$\rightarrow K$	$\pi^+\pi^-\pi^-\pi^0$
VALUE (%)		DOCUMENT ID		TECN	COMMENT
$-0.3 \pm 0.6 \pm 0.4$		BONVICINI	14	CLEO	All CLEO-c runs
• • • We do not use	the following	data for average	s, fits,	limits, e	etc. ● ● ●
$1.0\!\pm\!0.9\!\pm\!0.9$		DOBBS	07	CLEO	See BONVICINI 14
$A_{CP}(K^0_S\pi^\pm\pi^0)$ in	$D^+ \rightarrow K_2^0$	$5^{0}\pi^{+}\pi^{0}$, D^{-} -	→ K	$S^{0}\pi^{-}\pi^{0}$)
VALUE (%)		DOCUMENT ID		TECN	COMMENT
$-0.1\pm0.7\pm0.2$		BONVICINI	14	CLEO	All CLEO-c runs
• • • We do not use	the following	data for average	s, fits,	limits, e	etc. ● ● ●
$0.3 {\pm} 0.9 {\pm} 0.3$		DOBBS	07	CLEO	See BONVICINI 14
$A_{CP}(K^0_S\pi^\pm\eta)$ in I	$D^{\pm} \rightarrow K_{S}^{0}$	$\pi^{\pm}\eta$			
VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
$-0.9{\pm}2.9{\pm}1.0$	1.3k	ABLIKIM	20V	BES3	e ⁺ e ⁻ , 3773 MeV
$A_{CP}(K^0_S\pi^{\pm}\pi^+\pi^-$) in $D^+ \rightarrow$	$K_{S}^{0}\pi^{+}\pi^{+}\pi^{-}$	-, D-	$\rightarrow k$	$K^0_S \pi^- \pi^- \pi^+$
VALUE (%)		DOCUMENT ID		TECN	COMMENT
$0.0 \pm 1.2 \pm 0.3$		BONVICINI	14	CLEO	All CLEO-c runs
\bullet \bullet \bullet We do not use	the following	data for average	s, fits,	limits, e	etc. • • •
$0.1\!\pm\!1.1\!\pm\!0.6$		DOBBS	07	CLEO	See BONVICINI 14
$A_{CP}(K^{\pm}\pi^{+}\pi^{-}\pi^{0})$) in $D^{\pm} \rightarrow$	$K^{\pm}\pi^{+}\pi^{-}\pi$	0		
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
$-0.04{\pm}0.06{\pm}0.01$	350	ABLIKIM	20z	BES3	e ⁺ e ⁻ , 3773 MeV
$A_{CP}(\pi^{\pm}\pi^{0})$ in D^{\pm}	$= \rightarrow \pi^{\pm} \pi^{0}$				
VALUE (%)	EVTS	DOCUMENT	ID	TECN	COMMENT
0.4 ±1.3 OUR AV	ERAGE Err	or includes scale	factor	of 1.7.	See the ideogram below.
$-1.3\ \pm 0.9\ \pm 0.6$	28.7k	AAIJ	21 U	LHCB	<i>pp</i> at 7, 8, 13 TeV
$2.31\!\pm\!1.24\!\pm\!0.23$	108k	BABU	18	BELL	At/near $arphi(4S)$, $arphi(5S)$
$2.9 \ \pm 2.9 \ \pm 0.3$	2.6k	MENDEZ	10	CLEO	e^+e^- at 3774 MeV

$A_{CP}(\overline{K}^0/K^0K^{\pm})$ ir	$D^+ \rightarrow$	$\overline{K}^0 K^+$, D^- -	→ K ⁰	⁰ K-	
VALUE (%) 0.11±0.17 OUR AVERA	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
$0.03\!\pm\!0.17\!\pm\!0.14$	1.0M	¹ AAIJ	14bd	LHCB	<i>pp</i> at 7, 8 TeV
$0.08\!\pm\!0.28\!\pm\!0.14$	277k	KO	13	BELL	e^+e^- at $\varUpsilon(4S)$
$0.46\!\pm\!0.36\!\pm\!0.25$	159k	LEES	13E	BABR	e^+e^- at $\Upsilon(4S)$
¹ AAIJ 14BD reports	its result	as $A_{CD}(D^{\pm} \rightarrow$	$K_{c\tau}^0$	τ^{\pm}) wit	h CP-violation effects in
the $K^0-\overline{K}^0$ system	m subtrac	ted. It also me	asures	$A_{CP}(L$	$D^{\pm} \rightarrow \overline{\kappa}^0 / \kappa^0 \kappa^{\pm}$) +
$A_{CP}(D_s^{\pm} \rightarrow \overline{K}^0/T)$	$\kappa^0 \pi^{\pm}) =$	(0.41 \pm 0.49 \pm	0.26)%).	
$A_{CP}(K^0_S K^{\pm})$ in D^{\pm}	$\rightarrow K_S^0$	Kŧ			
VALUE (%)	EVTS	DOCUMENT ID	TE	ECN CO	OMMENT
-0.01 ± 0.07 OUR AV	/ERAGE				
$-0.004\pm0.061\pm0.045$	6M	AAIJ 1	.9⊤ Lŀ	HCB p	p at 7, 8, 13 TeV
$-1.8 \pm 2.7 \pm 1.6$	780	ABLIKIM 1	.9м BI	ES3 <i>e</i> ⁻	+ e ⁻ at 3773 MeV
$-0.25 \pm 0.28 \pm 0.14$	277k	KO 1	.3 BI	ELL e	$+e^{-}$ at $\gamma(nS)$
$0.13 \pm 0.36 \pm 0.25$	159k	LEES 1	.3E B/	ABR e⁻	$+e^{-}$ at $T(4S)$
$-0.2 \pm 1.5 \pm 0.9$	5.2k	MENDEZ 1	.0 CI	LEO e	$\top e^-$ at 3774 MeV
$7.1 \pm 0.1 \pm 1.2$	949 C.U. ·	LINK C	02B F($\int CS \gamma$	nucleus, $E_{\gamma} \approx 180~{\rm GeV}$.
• • • We do not use th	e following	data for average	s, fits,	limits, e	
$-0.16 \pm 0.58 \pm 0.25$		KO 1	.0 BI	ELL e	$^+e^- \approx \underline{\Upsilon}(4S)$
$6.9 \pm 6.0 \pm 1.5$	949	² LINK C)2B F($\int CS \gamma$	nucleus, $E_\gamma pprox 180~{ m GeV}$
1 LINK 02B measures	$N(D^+ \rightarrow$	$K_{S}^{0}K^{+})/N(D^{-})$	$^{+} \rightarrow$	$K_{S}^{0}\pi^{+})$, the ratio of numbers of
events observed, and ² LINK 028 measures	I similarly $N(D^+ \rightarrow $	for the D^- . $K_0^0 K^+$)/N(D^+	$ \rightarrow h$	$\sqrt{-\pi^+\pi}$	$^+$), the ratio of numbers
of events observed	and similar	$\sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i$),
$A_{CP}(K_S^0 K^{\pm} \pi^0)$ in	$D^{\pm} \rightarrow I$	$K^0_S K^{\pm} \pi^0$			
VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
$1.4 \pm 3.7 \pm 2.4$	470	ABLIKIM	19M	BES3	e^+e^- at 3773 MeV
$A_{CP}(K^0_L K^\pm \pi^0)$ in I	$D^{\pm} \rightarrow P$	$K^0_L K^{\pm} \pi^0$			
VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
$-0.6 \pm 4.1 \pm 1.7$	410	ABLIKIM	19M	BES3	e^+e^- at 3773 MeV
$A_{CP}(K^+K^-\pi^{\pm})$ in	$D^{\pm} \rightarrow$	$K^+K^-\pi^{\pm}$			
See also AAIJ 110	for a sea	rch for <i>CP</i> asymm	netry i	n the D^{2}	$^{\pm} \rightarrow K^{+}K^{-}\pi^{\pm}$ Dalitz
plots using 370k	decays an	d four different	binning	g schem	es. No evidence for CP
asymmetry was fo	und.				
VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT
0.37 ± 0.29 OUR AVE	RAGE	1			
$0.37 \pm 0.30 \pm 0.15$	224k	¹ LEES	13F	BABR	e^+e^- at $\Upsilon(4S)$
$-0.03\pm0.84\pm0.29$		RUBIN	08	CLEO	$e^{-}e^{-}$ at 3774 MeV
$1.4 \pm 1.0 \pm 0.8$	43k	- AUBERT	05s	BABR	$e^{ op} e^{ op}$ at $arLambda(4S)$
$0.6 \pm 1.1 \pm 0.5$	14k		00B	FOCS	0.000
-1.4 ± 2.9		~ AITALA	97 B	E791	$-0.062 < A_{CP} < +0.034 (90\% CL)$
-3.1 ± 6.8		³ FRABETTI	941	E687	$^{-0.14}$ $<\!$
https://pdg.lbl.gov		Page 51		Creat	ed: 7/25/2024 17:21

• • • We do not use the following data for averages, fits, limits, etc. • • •

$-0.1 \ \pm 0.9 \ \pm 0.4$	⁴ BONVICINI	14	CLEO	See RUBIN 08
$-0.1 \ \pm 1.5 \ \pm 0.8$	DOBBS	07	CLEO	See BONVICINI 14 and
				RUBIN 08

 1 This is the integrated CP asymmetry. LEES 13F also searches for CP asymmetries in four regions of the Dalitz plots (two of which are listed below); in comparisons of binned D^+ and D^- Dalitz plots; in parametrized fits to those plots, including 2-body submodes; and in comparisons of Legendre-polynomial distributions for the K^+K^- and $K^-\pi^+$ systems.

²AUBERT 05S measures $N(D^+ \rightarrow K^+ K^- \pi^+)/N(D_s^+ \rightarrow K^+ K^- \pi^+)$, the ratio of the numbers of events observed, and similarly for the D^- .

- ³ FRABETTI 94I, AITALA 98C, and LINK 00B measure $N(D^+ \rightarrow K^- K^+ \pi^+)/N(D^+ \rightarrow K^- K^+ \pi^+)$ $K^{-}\pi^{+}\pi^{+}$), the ratio of numbers of events observed, and similarly for the D^{-} .
- 4 RUBIN 08 performs a dedicated analysis of this decay mode on the same dataset, with slightly better precision. We therefore take it that BONVICINI 14 does not supersede RUBIN 08's A_{CP} result.

$A_{CP}(K^{\pm}K^{*0})$ in $D^+ \rightarrow K^+\overline{K}^{*0}$. $D^- \rightarrow K^-K^{*0}$

•••					
VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT
$-$ 0.3 \pm 0.4 OUR AVE	RAGE				
$-$ 0.3 \pm 0.4 \pm 0.2	73k	¹ LEES	13F	BABR	e^+e^- at $arphi(4S)$
$-$ 0.4 \pm 2.0 \pm 0.6		RUBIN	08	CLEO	Fit-fraction asymmetry
$+$ 0.9 \pm 1.7 \pm 0.7	11k	² AUBERT	05 S	BABR	e^+e^- at $argarma(4S)$
$-$ 1.0 \pm 5.0		³ AITALA	97 B	E791	$-0.092 < A_{CP} <$
		_			+0.072 (90% CL)
-12 ± 13		³ FRABETTI	941	E687	$-0.33 < A_{CP} <$
					+0.094 (90% CL)

¹This LEES 13F result is for the $K^{\mp}\pi^{\pm}$ mass-squared between 0.4 and 1.0 GeV², and does not actually separate out the K^* .

²AUBERT 05S measures $N(D^+ \rightarrow K^+ \overline{K}^{*0})/N(D_s^+ \rightarrow K^+ K^- \pi^+)$, the ratio of the numbers of events observed, and similarly for the D^- . ³FRABETTI 941 and AITALA 97B measure $N(D^+ \rightarrow K^+ \overline{K}^* (892)^0)/N(D^+ \rightarrow K^+ \overline{K}^* (892)^0)$

 $K^{-}\pi^{+}\pi^{+}$), the ratio of numbers of events observed, and similarly for the D^{-} .

$A_{CP}(\phi \pi^{\pm})$ in $D^{\pm} \rightarrow \phi \pi^{\pm}$

VALUE ((%)		EVTS	DOCUMENT ID		TECN	COMMENT
0.01	± 0.09	our av	/ERAGE	Error includes sca	le fac	tor of 1.	8.
0.003	3 ± 0.040	0 ± 0.029	55M	AAIJ	19⊤	LHCB	<i>pp</i> at 7, 8, 13 TeV
-0.3	± 0.3	± 0.5	97k	¹ LEES	13F	BABR	e^+e^- at $arphi(4S)$
+0.51	± 0.28	± 0.05	237k	STARIC	12	BELL	Mainly at $\Upsilon(4S)$
-1.8	± 1.6	$^{+0.2}_{-0.4}$		RUBIN	08	CLEO	Fit-fraction asymmetry
+0.2	± 1.5	± 0.6	10k	² AUBERT	05 S	BABR	e^+e^- at $arLambda(4S)$
-2.8	± 3.6			³ AITALA	97 B	E791	$-0.087 < A_{CP} <$
+6.6	±8.6			³ FRABETTI	941	E687	+0.031 (90% CL) -0.075 $< A_{CP} <$ +0.21 (90% CL)

² AUBERT 05S measures numbers of events observ ³ FRABETTI 94I and AIT the ratio of numbers of e ⁴ See AAIJ 19T.	GeV ² , and does not $N(D^+ \rightarrow \phi \pi^+)$ ved, and similarly for ALA 97B measure events observed, an	of actually $/N(D_s^+ - or the D^- or the D^- N(D^+ \rightarrow or similarly)$	separate $\rightarrow K^+ K^+$ $\phi \pi^+)/\phi$ for the	out the ϕ . $(K^{-}\pi^{+})$, the ratio of th $V(D^{+} \rightarrow K^{-}\pi^{+}\pi^{+})$ D^{-} .
$A_{CP}(K^{\pm}K_0^*(1430)^0)$ in	$D^+ \rightarrow K^+ \overline{K}_0^*$	(1430) ⁰ ,	$D^{-} \rightarrow TECN$	K ⁻ K [*] ₀ (1430) ⁰
$+8\pm6^{+4}_{-2}$	RUBIN	08	CLEO	Fit-fraction asymmetry
$A_{CP}(K^{\pm}K_{2}^{*}(1430)^{0})$ in	$D^+ \rightarrow K^+ \overline{K}_2^*$	(1430)⁰,	$D^{-} \rightarrow TECN$	К[—] К₂(1430)⁰ соммент
$+43\pm19^{+5}_{-18}$	RUBIN	08	CLEO	Fit-fraction asymmetry
$A_{CP}(K^{\pm}K_0^*(700))$ in $D^{VALUE(\%)}$	$+ \rightarrow K^+ \overline{K}^*_0(70)$)0), D -	→ K = _{TECN}	К*(700) соммент
$-12\pm11^{+14}_{-6}$	RUBIN	08	CLEO	Fit-fraction asymmetry
$A_{CP}(a_0(1450)^0\pi^\pm)$ in $L^{VALUE~(\%)}$	$D^{\pm} \rightarrow a_0(1450)$	0_π± T ID	TECN	COMMENT
				Fit-fraction asymmetry
$-19\pm12^{+8}_{-11}$	RUBIN	08	CLLU	
$-19\pm12^{+\ 8}_{-11}$ $A_{CP}(\phi(1680)\pi^{\pm})$ in D^{\pm}	RUBIN $^{\pm} \rightarrow \phi(1680) \pi^{\pm}$	08 E	CLLO	
$-19\pm12^{+8}_{-11}$ $A_{CP}(\phi(1680)\pi^{\pm})$ in D^{\pm}	RUBIN $ \rightarrow \phi(1680)\pi^{\pm}$ $ \underline{DOCUMEN} $	08 E <u>T ID</u>		COMMENT
$-19\pm12^{+8}_{-11}$ $A_{CP}(\phi(1680)\pi^{\pm}) \text{ in } D^{\pm}$ $\frac{VALUE(\%)}{-9\pm22\pm14}$	RUBIN → φ(1680)π [±] <u>Documen</u> RUBIN	08 E <u>T ID</u> 08	<u>TECN</u> CLEO	<u>COMMENT</u> Fit-fraction asymmetry
$-19\pm12^{+8}_{-11}$ $A_{CP}(\phi(1680)\pi^{\pm}) \text{ in } D^{\pm}$ $\xrightarrow{VALUE (\%)}_{-9\pm22\pm14}$ $A_{CP}(\pi^{\pm}2\pi^{0}) \text{ in } D^{\pm} \rightarrow$ $\sum_{VALUE (\%)}_{VALUE (\%)}$	RUBIN $f \rightarrow \phi(1680)\pi^{\pm}$ <u>DOCUMEN</u> RUBIN $\pi^{\pm}2\pi^{0}$	08 E <u>T ID</u> 08	<u>TECN</u>	<u>COMMENT</u> Fit-fraction asymmetry
$-19\pm12^{+\ 8}_{-11}$ $A_{CP}(\phi(1680)\pi^{\pm}) \text{ in } D^{\pm}$ $\xrightarrow{VALUE (\%)}{-9\pm22\pm14}$ $A_{CP}(\pi^{\pm}2\pi^{0}) \text{ in } D^{\pm} \rightarrow$ $\xrightarrow{VALUE (\%)}{+5.6\pm2.7\pm0.5}$	RUBIN $f \rightarrow \phi(1680)\pi^{\pm}$ <u>DOCUMEN</u> RUBIN $\pi^{\pm}2\pi^{0}$ <u>rs</u> <u>DOCUMEN</u> 2k ABLIKIM	08 <u>F</u> ID 08 <u>T ID</u> 22B ¹	CLEO <u>TECN</u> <u>TECN</u> G BES3	$\frac{COMMENT}{Fit-fraction asymmetry}$ $\frac{COMMENT}{e^+e^- \text{ at } 3.773 \text{ GeV}}$
$-19\pm12^{+}_{-11}^{8}$ $A_{CP}(\phi(1680)\pi^{\pm}) \text{ in } D^{\pm}$ $VALUE (\%)$ $-9\pm22\pm14$ $A_{CP}(\pi^{\pm}2\pi^{0}) \text{ in } D^{\pm} \rightarrow$ $VALUE (\%) \qquad EV$ $+5.6\pm2.7\pm0.5 \qquad 2$ $A_{CP}(\pi^{+}\pi^{-}\pi^{\pm}) \text{ in } D^{\pm}$ See also AAIJ 14C for using model-independent of the second sec	RUBIN $ \rightarrow \phi(1680)\pi^{\pm}$ <u>DOCUMEN</u> RUBIN $\pi^{\pm}2\pi^{0}$ TS <u>DOCUMEN</u> 2k ABLIKIM $\rightarrow \pi^{+}\pi^{-}\pi^{\pm}$ a search for <i>CP</i> went binned and unb <u>DOCUMENT ID</u>	08 <u>T ID</u> 08 <u>T ID</u> 22B violation ir inned met <u>TECN</u>	$\frac{TECN}{CLEO}$ $\frac{TECN}{GBES3}$ $D D^{\pm} \rightarrow $ hods. No	$\frac{COMMENT}{Fit-fraction asymmetry}$ $\frac{COMMENT}{e^+e^- \text{ at } 3.773 \text{ GeV}}$ $\pi^+\pi^-\pi^\pm \text{ Dalitz plotone was found.}$

I

$A_{CP}(2\pi^{\pm}\pi^{\mp}\pi^{0})$ in $A_{CP}(2\pi^{\pm}\pi^{\mp}\pi^{0})$	$D^{\pm} \rightarrow 2\pi$	±π∓π ⁰						
VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT			
$+0.3\pm1.8\pm0.8$	4.6k	ABLIKIM	22bg	BES3	e^+e^- at 3.773 GeV			
$A_{CP}(2\pi^{\pm}\pi^{\mp}2\pi^{0})$ in	$D^{\pm} \rightarrow 2$	$\pi^{\pm}\pi^{\mp}2\pi^{0}$						
VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT			
$-4.2 \pm 3.8 \pm 1.3$	1.2k	ABLIKIM	22bg	BES3	e^+e^- at 3.773 GeV			
$A_{CP}(\pi^+\pi^-\pi^\pm\eta)$ in $D^\pm o \pi^+\pi^-\pi^\pm\eta$								
VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT			
$2.5 {\pm} 5.0 {\pm} 1.6$	510	ABLIKIM	20V	BES3	e^+e^- , 3773 MeV			
$A_{CP}(K^0_S K^{\pm} \pi^+ \pi^-)$	in $D^{\pm} \rightarrow$	$K_S^0 K^{\pm} \pi^+ \pi^-$	-					
VALUE (%)	EVTS	DOCUMENT	ID	TEC	N COMMENT			
$-4.2\pm6.4\pm2.2$	523 ± 32	LINK	(D5E FOO	CS γ A, $\overline{E}_{\gamma} pprox$ 180 GeV			
$A_{CP}(K^{\pm}\pi^{0})$ in D^{\pm}	$\rightarrow K^{\pm}\pi^{0}$							
VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT			
-3 ± 5 OUR AVER	AGE							
$-3.2\pm$ 4.7 \pm 2.1	2.5k	AAIJ	210	LHCB	<i>pp</i> at 7, 8, 13 TeV			
$-3.5\!\pm\!10.7\!\pm\!0.9$	343	MENDEZ	10	CLEO	e^+e^- at 3774 MeV			
$A_{CP}(K^{\pm}\eta)$ in D^{\pm} -	$\rightarrow K^{\pm}\eta$							
VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT			
$-6\pm10\pm4$	880	AAIJ	210	LHCB	pp at 13 TeV			

$D^{\pm} \chi^2$ TESTS OF *CP*-VIOLATION (*CPV*)

We list model-independent searches for local *CP* violation in phase-space distributions of multi-body decays.

Most of these searches divide phase space (Dalitz plot for 3-body decays, five-dimensional equivalent for 4-body decays) into bins, and perform a χ^2 test comparing normalised yields N_i , \overline{N}_i in *CP*-conjugate bin pairs $i: \chi^2 = \Sigma_i (N_i - \alpha \overline{N}_i) / \sigma (N_i - \alpha \overline{N}_i)$. The factor $\alpha = (\Sigma_i N_i) / (\Sigma_i \overline{N}_i)$ removes the dependence on phase-space-integrated rate asymmetries. The result is used to obtain the probability (p-value) to obtain the measured χ^2 or larger under the assumption of CP conservation [AUBERT 08AO, BEDIAGA 09]. Alternative methods obtain p-values from other test variables based on unbinned analyses [WILLIAMS 11, AAIJ 14C]. Results can be combined using Fisher's method [MOSTELLER 48].

Local CPV in $D^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm}$										
p-value (%)	EVTS	DOCUMENT ID		TECN	COMMENT					
78.1	3.1M	¹ AAIJ	14C	LHCB	χ^2					

 $^1\,{\sf AAIJ}$ 14C uses binned and unbinned methods, and finds slightly better sensitivity with the former. We took the first value in the table of results for the binned method.

Local <i>CPV</i> in $D^{\pm} \rightarrow K^{+}K^{-}\pi^{\pm}$										
p-value (%)	EVTS	DOCUMENT ID		TECN	COMMENT					
31 OUR EVALUATION	1									
72	224k	LEES	13F	BABR	χ^2					
12.7	370k	¹ AAIJ	11G	LHCB	χ^2					

¹ AAIJ 11G publishes results for several binning schemes. We picked the first value in their table of results.

Local CPV in $D^{\pm} \rightarrow K^+ K^- K^{\pm}$										
VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT					
31.6	1.27M	AAIJ	23L	LHCB	χ^2					

CP VIOLATING ASYMMETRIES OF P-ODD (T-ODD) MOMENTS

 $A_{Tviol}(K^0_S K^{\pm} \pi^+ \pi^-)$ in $D^{\pm} \rightarrow K^0_S K^{\pm} \pi^+ \pi^ C_T \equiv \vec{p}_{K^+} \cdot (\vec{p}_{\pi^+} \times \vec{p}_{\pi^-})$ is a parity-odd correlation of the K^+ , π^+ , and $\pi^$ momenta for the D^+ . $\overline{C}_T \equiv \vec{p}_{K^-} \cdot (\vec{p}_{\pi^-} \times \vec{p}_{\pi^+})$ is the corresponding quantity for the D^- . Then $\begin{array}{ll} \underline{\mathsf{A}}_T &\equiv & [\Gamma(\mathsf{C}_T > \mathbf{0}) - \ \Gamma(\mathsf{C}_T < \mathbf{0})] \ / \ [\Gamma(\mathsf{C}_T > \mathbf{0}) + \ \Gamma(\mathsf{C}_T < \mathbf{0})], \text{ and} \\ \overline{\mathsf{A}}_T &\equiv & [\Gamma(-\overline{\mathsf{C}}_T > \mathbf{0}) - \ \Gamma(-\overline{\mathsf{C}}_T < \mathbf{0})] \ / \ [\Gamma(-\overline{\mathsf{C}}_T > \mathbf{0}) + \ \Gamma(-\overline{\mathsf{C}}_T < \mathbf{0})], \text{ and} \end{array}$ $A_{Tviol} \equiv \frac{1}{2}(A_T - \overline{A}_T)$. C_T and \overline{C}_T are commonly referred to as *T*-odd moments, because they are odd under *T* reversal. However, the *T*-conjugate process $K_S^0 K^{\pm} \pi^+ \pi^- \rightarrow D^{\pm}$ is not accessible, while the *P*-conjugate process is. VALUE (units 10^{-3}) EVTS DOCUMENT ID TECN COMMENT - 3 ± 8 OUR AVERAGE Error includes scale factor of 1.1. 23 BELL 980 fb $^{-1}$ at $\sim \Upsilon(4S)$ $3.4\pm~8.7\pm~3.2$ 19k MOON 11E BABR $e^+e^- \approx \Upsilon(4S)$ LEES $-12.0\pm10.0\pm$ 4.6 21k \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet 05E FOCS γ A, $\overline{E}_{\gamma} \approx 180$ GeV 523 LINK $23 \pm 62 \pm 22$

$A_{Tviol}(K^+K^-K^0_S\pi^{\pm})$ in $D^{\pm} \rightarrow K^+K^-K^0_S\pi^{\pm}$

$$\begin{split} \mathsf{C}_T &\equiv \vec{p}_{K^+} \cdot (\vec{p}_{\pi^+} \times \vec{p}_{K^-}) \text{ is a parity-odd correlation of the } K^+, \pi^+, \text{ and } K^- \\ \text{momenta for the } D^+, \ \overline{C}_T &\equiv \vec{p}_{K^-} \cdot (\vec{p}_{\pi^-} \times \vec{p}_{K^+}) \text{ is the corresponding quantity for} \\ \text{the } D^-. \text{ Then} \\ \underline{A}_T &\equiv [\Gamma(\mathsf{C}_T > 0) - \Gamma(\mathsf{C}_T < 0)] / [\Gamma(\mathsf{C}_T > 0) + \Gamma(\mathsf{C}_T < 0)], \text{ and} \\ \overline{A}_T &\equiv [\Gamma(-\overline{C}_T > 0) - \Gamma(-\overline{C}_T < 0)] / [\Gamma(-\overline{C}_T > 0) + \Gamma(-\overline{C}_T < 0)], \text{ and} \\ A_{Tviol} &\equiv \frac{1}{2}(A_T - \overline{A}_T). \ C_T \text{ and } \overline{C}_T \text{ are commonly referred to as } T\text{-odd moments, because they are odd under } T \text{ reversal. However, the } T\text{-conjugate process} \\ K^+ K^- K_S^0 \pi^\pm \to D^\pm \text{ is not accessible, while the } P\text{-conjugate process is.} \end{split}$$

VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT
$-3.34{\pm}2.66{\pm}0.35$	1.4k	MOON	23	BELL	980 fb $^{-1}$ at $\sim \Upsilon$ (4 <i>S</i>)

SEMILEPTONIC FORM FACTORS

$f_+(0) V_{cd} $ in $D^+ \rightarrow$	$\pi^0 \ell^+ \nu_\ell$				
VALUE	<u>I</u>	DOCUMENT ID		TECN	COMMENT
0.1407 ± 0.0025 OUR AVE	RAGE				0
$0.1400 \pm 0.0026 \pm 0.0007$	1	ABLIKIM	17S	BES3	$\pi^0 e^+ \nu_e$ 2-parameter fit
$0.146 \pm 0.007 \pm 0.002$	I	BESSON	09	CLEO	$\pi^0 e^+ \nu_e$ 3-parameter fit
$r_1 \equiv a_1/a_0$ in $D^+ \rightarrow$	$\pi^0 \ell^+ \nu_\ell$				
VALUE		DOCUMENT ID		TECN	COMMENT
-2.00 ± 0.13 OUR AVERA	AGE				
$-2.01\!\pm\!0.13\!\pm\!0.02$	1	ABLIKIM	17S	BES3	$\pi^0 e^+ \nu_e$ 2-parameter fit
$-1.37 \pm 0.88 \pm 0.24$	ł	BESSON	09	CLEO	$\pi^0 e^+ \nu_e$ 3-parameter fit
$r_2 \equiv a_2/a_0$ in $D^+ \rightarrow$	$\pi^0 \ell^+ \nu_\ell$	DOCUMENT ID		TECN	COMMENT
	<u>/</u>		00		0 + 2
-4±5±1	I	BESSON	09	CLEO	$\pi^{\circ}e^{+}\nu_{e}^{-}$ 3-parameter fit
$f_{1}(0) V_{ad} $ in $D^{+} \rightarrow$	$n\ell^+\nu_{\ell}$	l = e or v			
$(-1)^{-2}$				TECN	COMMENT
8.4 +0.4 OUR AVERAG	E	DOCOMENT ID		TLCN	COMMENT
$8.7 \pm 0.8 \pm 0.2$	234	ABLIKIM	20т	- BES3	$\eta \mu^+ \nu_{\mu}$, z expansion
$7.86 \pm 0.64 \pm 0.21$	373	ABLIKIM	18R	BES3	$ne^+\nu_{-}$ z expansion
$8.6 \pm 0.6 \pm 0.1$	010	YELTON	11	CLEO	$ne^+\nu_e$, z expansion
				0220	ne re, i expansion
$r_1 \equiv a_1/a_0 \text{ in } D^+ \rightarrow P_{A_1 \cup F}$	η e⁺ ν_e	DOCUMENT ID		TECN	COMMENT
-5.3 ±2.7 OUR AVER	AGE Erro	or includes scale	e facto	or of 1.9	
$-7.33 \pm 1.69 \pm 0.40$	373	ABLIKIM	18R	BES3	z expansion
$-1.83{\pm}2.23{\pm}0.28$		YELTON	11	CLEO	z expansion
$r_{\mathbf{v}} \equiv V(0)/A_1(0)$ in D	$^+ \rightarrow \omega$	e ⁺ ν _e			
VALUE		DOCUMENT ID		TECN	COMMENT
$1.24 \pm 0.09 \pm 0.06$		ABLIKIM	150	V BES3	292 fb $^{-1}$, 3773 MeV
$r_0 = A_0(0)/A_1(0)$ in /	$D^+ \rightarrow u$	ر, + ر			
V_{ALUE}	<i>,</i> , , ,	осимент ID		TECN	COMMENT
1.06+0.15+0.05		ABLIKIM	15v	V BES3	292 fb ⁻¹ 3773 MeV
			101	. 5200	
$r_v \equiv V(0)/A_1(0)$ in D	$^+, D^0 \rightarrow$	$\rho e^+ \nu_e$			
VALUE E	EVTS	DOCUMENT ID		TECN	COMMENT
1.64 ± 0.10 OUR AVER/	AGE Erro	or includes scal	e fact	or of 1.2	
$1.695 \!\pm\! 0.083 \!\pm\! 0.051$	2.5k	ABLIKIM	190	BES3	e^+e^- at 3773 MeV
$1.48\ \pm 0.15\ \pm 0.05$	1,2	² DOBBS	13	CLEO	e^+e^- at $\psi(3770)$
¹ ₂ Uses both D^+ and D^0) events.				
² Using PDG 10 value	es of V_{ca}	and lifetime	s, DC	DBBS 1	3 gets $A_1(0) = 0.56 \pm$
$0.01^{+0.02}_{-0.03}, A_2(0) = 0$.47 ± 0.06	$5\pm$ 0.04, and	V(0) =	= 0.84 ±	$0.09^{+0.05}_{-0.06}$

$r_2 \equiv A_2(0)/A_1(0)$ in $D^+, D^0 \to \rho e^+ \nu_e$										
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT					
0.84 ±0.06 OUR AVE	RAGE									
$0.845\!\pm\!0.056\!\pm\!0.039$	2.5k	¹ ABLIKIM	19 C	BES3	e^+e^- at 3773 MeV					
$0.83\ \pm 0.11\ \pm 0.04$		^{1,2} DOBBS	13	CLEO	e^+e^- at $\psi(3770)$					
¹ Uses both D^+ and ² Using PDG 10 val $0.01^{+0.02}_{-0.03}, A_2(0) =$	D^0 even ues of 0.47 \pm	ts. V_{cd} and lifetimes, 0.06 \pm 0.04, and V(DO (0) =	BBS 13 $0.84 \pm$	gets $A_1(0) = 0.56 \pm 0.09^{+0.05}_{-0.06}$					

 $r_{\nu} \equiv V(0)/A_1(0) \text{ in } D^+ \rightarrow \overline{K}^*(892)^0 \ell^+ \nu_{\ell}$ See also BRIERE 10 for $\overline{K}^* \ell^+ \nu_{\ell}$ helicity-basis form-factor measurements.

VALUE		<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
1.49 ± 0.05	OUR AVE	RAGE	Error includes scale	factor	of 2.1.	See the ideogram below
1.411 ± 0.058	± 0.007	16.2k	ABLIKIM	16F	BES3	$\overline{K}^{*}(892)^{0} e^{+} \nu_{e}$
1.463 ± 0.017	± 0.031		¹ DEL-AMO-SA.	. 111	BABR	-
1.504 ± 0.057	± 0.039	15k	² LINK	02L	FOCS	$\overline{K}^{*}(892)^{0} \mu^{+} \nu_{\mu}$
$1.45 \ \pm 0.23$	± 0.07	763	ADAMOVICH	99	BEAT	$\overline{K}^{*}(892)^{0} \mu^{+} \nu_{\mu}^{'}$
$1.90\ \pm 0.11$	± 0.09	3000	³ AITALA	98 B	E791	$\overline{K}^*(892)^0 e^+ \nu_e$
$1.84 \ \pm 0.11$	± 0.09	3034	AITALA	98F	E791	$\overline{K}^{*}(892)^{0} \mu^{+} \nu_{\mu}$
$1.74 \ \pm 0.27$	± 0.28	874	FRABETTI	93E	E687	$\overline{K}^*(892)^0 \mu^+ \nu_\mu$
$2.00 \ \begin{array}{c} +0.34 \\ -0.32 \end{array}$	± 0.16	305	KODAMA	92	E653	$\overline{\kappa}^*(892)^0 \mu^+ \nu_{\mu}$
• • • We do	not use th	e followi	ng data for averages	, fits,	limits, e	tc. ● ● ●
2.0 ± 0.6	± 0.3	183	ANJOS	90e	E691	$\overline{K}^*(892)^0 e^+ \nu_e$

WEIGHTED AVERAGE 1.49±0.05 (Error scaled by 2.1)

 $r_{v} \equiv V(0)/A_{1}(0) \text{ in } D^{+}
ightarrow \overline{K}^{*}(892)^{0} \ell^{+}
u_{\ell}$

 $^1\,{\sf DEL}\xspace$ DEL-AMO-SANCHEZ 11I finds the pole mass $m_{{\cal A}}\,=\,(2.63\,\pm\,0.10\,\pm\,0.13)$ GeV $(m_V \text{ is fixed at 2 GeV})$. ²LINK 02L includes the effects of interference with an *S*-wave background. This

- much improves the goodness of fit, but does not much shift the values of the form factors.
- ³This is slightly different from the AITALA 98B value: see ref. [5] in AITALA 98F.

https://pdg.lbl.gov

$r_2 \equiv A_2(0)/A_1(0)$ in $D^+ \rightarrow \overline{K}^*(892)^0 \ell^+ \nu_\ell$

	See also	o BRIERE	10 for $K^*\ell^-$	$^+ u_\ell$ helicity-basis	s form	-factor r	neasurements.
VALUE			EVTS	DOCUMENT ID		TECN	COMMENT
0.802	±0.021	OUR AVE	RAGE				
0.788	± 0.042	± 0.008	16.2k	ABLIKIM	16F	BES3	$\overline{K}^{*}(892)^{0} e^{+} \nu_{e}$
0.801	± 0.020	\pm 0.020		¹ DEL-AMO-SA.	111	BABR	
0.875	± 0.049	± 0.064	15k -	² LINK	02L	FOCS	$\overline{K}^{*}(892)^{0} \mu^{+} \nu_{\mu}$
1.00	± 0.15	± 0.03	763	ADAMOVICH	99	BEAT	$\overline{K}^{*}(892)^{0} \mu^{+} \nu_{\mu}$
0.71	± 0.08	± 0.09	3000	AITALA	98 B	E791	$\overline{K}^*(892)^0 e^+ \nu_e$
0.75	± 0.08	± 0.09	3034	AITALA	98F	E791	$\overline{K}^{*}(892)^{0} \mu^{+} \nu_{\mu}$
0.78	± 0.18	± 0.10	874	FRABETTI	93E	E687	$\overline{K}^{*}(892)^{0} \mu^{+} \nu_{\mu}$
0.82	$^{+0.22}_{-0.23}$	± 0.11	305	KODAMA	92	E653	$\overline{K}^*(892)^0 \mu^+ \nu_\mu$
• • •	We do	not use the	e following o	data for averages	, fits,	limits, e	tc. • • •
0.0	± 0.5	± 0.2	183	ANJOS	90e	E691	$\overline{K}^*(892)^0 e^+ \nu_e$
¹ D fix	EL-AM xed at 2	O-SANCHE GeV).	Z 111 finds	the pole mass <i>m</i>	A = (2.63 ± 0	$0.10\pm0.13)~{ m GeV}~(m_V~{ m is})$

 2 LINK 02L includes the effects of interference with an S-wave background. This much improves the goodness of fit, but does not much shift the values of the form factors.

$r_3 \equiv A_3(0)/A_1(0) \text{ in } D^+ \to \overline{K}^*(892)^0 \ell^+ \nu_\ell$

See also BRIERE	10 for $K^*\ell^+$	ν_ℓ helicity-basis	s form	n-factor	measurements.
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.04±0.33±0.29	3034	AITALA	98F	E791	$\overline{K}^*(892)^0 \mu^+ \nu_\mu$

Γ_L/Γ_T in $D^+ \rightarrow \overline{K}^*(892)^0 \ell^+ \nu_\ell$

56	e also BRIERE	10 for $K^{+}\ell^{+}$	ν_{ℓ} helicity-basis	s torm	-factor	measurements.
VALUE		EVTS	DOCUMENT ID		TECN	COMMENT
1.13±0	08 OUR AVERA	GE				
$1.09\pm0.$	10 ± 0.02	763	ADAMOVICH	99	BEAT	$\overline{K}^{*}(892)^{0} \mu^{+} \nu_{\mu}$
$1.20\pm0.$	13 ± 0.13	874	FRABETTI	93E	E687	$\overline{K}^*(892)^0 \mu^+ \nu_{\mu}$
1.18 ± 0.11	18 ± 0.08	305	KODAMA	92	E653	$\overline{K}^{*}(892)^{0} \mu^{+} \nu_{\mu}^{'}$
• • • W	/e do not use the	following d	ata for averages	, fits,	limits, e	etc. • • •
$1.8 \begin{array}{c} +0 \\ -0 \end{array}$	$^{6}_{4}$ ±0.3	183	ANJOS	90e	E691	$\overline{\kappa}^*$ (892) ⁰ e ⁺ ν_e

$\Gamma_+/\Gamma_- \text{ in } D^+ \rightarrow \overline{K}^*(892)^0 \ell^+ \nu_\ell$

See also BRIERE 10 for $K^*\ell^+ u_\ell$ helicity-basis form-factor measurements.									
EVTS	DOCUMENT ID		TECN	COMMENT					
0.22±0.06 OUR AVERAGE Error includes scale factor of 1.6.									
763	ADAMOVICH	99	BEAT	$\overline{K}^{*}(892)^{0} \mu^{+} \nu_{\mu}$					
305	KODAMA	92	E653	$\overline{K}^{*}(892)^{0} \mu^{+} \nu_{\mu}$					
e following o	lata for averages	s, fits,	limits, e	etc. • • •					
183	ANJOS	90e	E691	$\overline{K}^*(892)^0 e^+ \nu_e$					
	10 for <i>K</i> *ℓ ⁻ <u>EVTS</u> AGE Error 763 305 e following o 183	10 for $K^* \ell^+ \nu_\ell$ helicity-basi <u>EVTS</u> <u>DOCUMENT ID</u> AGEError includes scale far763ADAMOVICH305KODAMAe following data for averages183ANJOS	10 for $K^* \ell^+ \nu_\ell$ helicity-basis form <u>EVTS</u> <u>DOCUMENT ID</u> AGEError includes scale factor o763ADAMOVICH 99305KODAMA 92e following data for averages, fits,183ANJOS90E	10 for $K^* \ell^+ \nu_\ell$ helicity-basis form-factor <u>EVTS</u> <u>DOCUMENT ID</u> AGE Error includes scale factor of 1.6.763ADAMOVICH 99305KODAMA92E653e following data for averages, fits, limits, e183ANJOS90EE691					

Amplitude analyses

$D \rightarrow K \pi \pi \pi$ partial wave analyses

Amplitude analyses of D^+ decays to a variety of 4-body kaon or pion final states, fitting simultaneously different partial wave components.

VALUE	DOCUMENT ID	TECN	COMMENT
	ABLIKIM	19AZ BES3	$\overline{D^+ \rightarrow \ \kappa^0_S \pi^+ \pi^+ \pi^-}$

$D^+ \rightarrow 2\pi^+\pi^-$ partial wave analyses

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
	572k -	¹ AAIJ	23н	LHCB	Dalitz plot fit
	2.2k	BONVICINI	07	CLEO	
	1.5k	LINK	04	FOCS	
	1.2k	AITALA	01 B	E791	

¹ The amplitude model has 7 components, including a $\pi^+ \pi^{\pm}$ *S*-wave parametrised by one complex number per bin in 50 bins of $\pi^+ \pi^-$ invariant mass.

AAIJ	23E	JHEP 2304 081	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	23H	JHEP 2306 044	R. Aaij <i>et al.</i>	(LHCb_Collab.)
AAIJ	23L	JHEP 2307 067	R. Aaij <i>et al.</i>	(LHCb_Collab.)
ABLIKIM	23AI	PR D107 032002	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	23AO	PR D107 112005	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	23BW	JHEP 2309 077	M. Ablikim <i>et al.</i>	(BESIII Collab.)
LI	23G	PR D107 033003	L.K. Li <i>et al.</i>	(BELLE Collab.)
MOON	23	PR D108 L111102	H.K. Moon <i>et al.</i>	(BELLE Collab.)
ABLIKIM	22BG	PR D106 092005	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	22BJ	PR D106 112009	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	22BK	JHEP 2209 107	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	22U	PR D105 032009	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	22Y	PR D106 032002	M. Ablikim <i>et al.</i>	(BESIII Collab.)
AAIJ	21T	JHEP 2106 044	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	21U	JHEP 2106 019	R. Aaij <i>et al.</i>	(LHCb_Collab.)
ABLIKIM	21AD	PR D104 012006	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	21BA	PR D104 052008	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	21BB	PR D104 072005	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABUDINEN	21A	PRL 127 211801	F. Abudinen et al.	(BELLE II Collab.)
ABLIKIM	20AA	PR D102 052003	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	20AC	PR D102 052006	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	20AF	PR D102 112005	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	20D	PR D101 031102	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	20G	PR D101 052009	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	20H	PR D101 072005	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	20T	PRL 124 231801	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	20V	PRL 124 241803	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	20Z	PRL 125 141802	M. Ablikim <i>et al.</i>	(BESIII Collab.)
AAIJ	19G	JHEP 1903 176	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	19H	JHEP 1904 063	R. Aaij <i>et al.</i>	(LHCb_Collab.)
AAIJ	19T	PRL 122 191803	R. Aaij <i>et al.</i>	(LHCb Collab.)
ABLIKIM	19AL	PR D99 112002	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	19AY	PR D100 072006	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	19AZ	PR D100 072008	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	19BG	PRL 123 211802	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	19BH	PRL 123 231801	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	19BI	PL B798 135017	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	19C	PRL 122 062001	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	19M	PR D99 032002	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	18AC	PR D98 092009	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	18AE	PRL 121 171803	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	18F	PRL 121 081802	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	18P	PR D97 072015	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	18R	PR D97 092009	M. Ablikim <i>et al.</i>	(BESIII Collab.)

https://pdg.lbl.gov

ABLIKIM	18W	PR D97 072004	M. Ablikim <i>et al.</i>	(BESIII Collab.)
BABU	18	PR D97 011101	V. Babu <i>et al.</i>	(BELLE Collab.)
AAIJ	17AF	PL B771 21	R. Aaij <i>et al.</i>	(LHCb Collab.)
ABLIKIM	17A	PL B765 231	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	17AD	PR D96 092002	M. Ablikim <i>et al.</i>	(BESIII Collab.)
	170	PR D95 071102	IVI. ADIIKIM <i>et al.</i>	(BESIII Collab.)
	175 16D	PR D90 012002 PRI 116 082001	M. Ablikim <i>et al.</i>	(BESIII Collab.)
	10D 16F	PR D04 032001	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	16G	FP1 C76 369	M Ablikim <i>et al</i>	(BESIII Collab.)
ABLIKIM	16V	CP C40 113001	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	15AF	PR D92 112008	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	15W	PR D92 071101	M. Ablikiim et al.	(BESIII Collab.)
AAIJ	14BD	JHEP 1410 025	R. Aaij <i>et al.</i>	(LHCb_Collab.)
AAIJ	14C	PL B728 585	R. Aaij <i>et al.</i>	(LHCb Collab.)
ABAZOV	14L	PR D90 111102	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABLIKIM	14E	PR D89 052001	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	14	PR D89 051104	M. Ablikim <i>et al.</i>	(BESIII Collab.)
BONVICINI	14 124 E	PR D89 072002	G. Bonvicini <i>et al.</i>	(CLEO Collab.)
	13AF	PL B/24 203	R. Aaij <i>et al.</i> D. Aaii at al	(LHCb Collab.)
DOBBS	1300	DDI 110 131802	R. Adij el di. S. Dobbs at al	(CLEO Collab.)
KU	13	IHEP 1302 008	BR Ko et al	(BELLE Collab.)
LEES	13F	PR D87 052012	IP Lees et al	(BABAR Collab.)
LEES	13E	PR D87 052010	J.P. Lees et al.	(BABAR Collab.)
KO	12A	PRL 109 119903	(errat.) B.R. Ko <i>et al.</i>	(BELLE Collab.)
Also		PRL 109 021601	B.R. Ko et al.	(BELLE Collab.)
STARIC	12	PRL 108 071801	M. Staric <i>et al.</i>	(BELLE Collab.)
AAIJ	11G	PR D84 112008	R. Aaij <i>et al.</i>	`(LHCb_Collab.)
DEL-AMO-SA	11H	PR D83 071103	P. del Amo Sanchez <i>et al.</i>	(BABAR Collab.)
DEL-AMO-SA	111	PR D83 072001	P. del Amo Sanchez <i>et al.</i>	(BABAR Collab.)
LEES	11E	PR D84 031103	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	11G	PR D84 072006	J.P. Lees <i>et al.</i>	(BABAR Collab.)
WILLIAWS	11	PK D84 054015	Mar at al	
	11	PRL 107 221801	E. VVON <i>et al.</i>	(BELLE Collab.)
	104	PI R686 84	VV Anashin et al	(VEPP-4M KEDR Collab.)
ASNER	10	PR D81 052007	D M Asner et al	(CLEO Collab.)
BRIERE	10	PR D81 112001	R.A. Briere <i>et al.</i>	(CLEO Collab.)
КО	10	PRL 104 181602	B.R. Ko et al.	(BELLE Collab.)
MENDEZ	10	PR D81 052013	H. Mendez <i>et al.</i>	(CLEO Collab.)
PDG	10	JP G37 075021	K. Nakamura <i>et al.</i>	(PDG Collab.)
RUBIN	10	PR D82 092007	P. Rubin <i>et al.</i>	(ČLEO Collab.)
BEDIAGA	09	PR D80 096006	I. Bediaga <i>et al.</i>	(CBPF, NDAM)
BESSON	09	PR D80 032005	D. Besson <i>et al.</i>	(CLEO Collab.)
Also	00	PR D79 052010	J.Y. Ge <i>et al.</i>	(CLEO Collab.)
KU	09	PRL 102 221802	B.R. Ko <i>et al.</i>	(BELLE Collab.)
	09	PL DU01 14 DDI 102 001001	D.E. Mitchell at al	(FINAL FOCUS Collab.)
WON	090	PR D80 111101	F. Won et al	(CELO Collab.)
ABAZOV	08D	PRI 100 101801	V M Abazov <i>et al</i>	(D0 Collab.)
ABLIKIM	08L	PL B665 16	M. Ablikim <i>et al.</i>	(BES Collab.)
ARTUSO	08	PR D77 092003	M. Artuso <i>et al.</i>	(CLEO Collab.)
AUBERT				
	08AO	PR D78 051102	B. Aubert <i>et al.</i>	(BABAR Collab.)
BONVICINI	08A0 08	PR D78 051102 PR D77 091106	B. Aubert <i>et al.</i> G. Bonvicini <i>et al.</i>	(BABAR Collab.) (CLEO Collab.)
BONVICINI BONVICINI	08AO 08 08A	PR D78 051102 PR D77 091106 PR D78 052001	B. Aubert <i>et al.</i> G. Bonvicini <i>et al.</i> G. Bonvicini <i>et al.</i>	(BABAR Collab.) (CLEO Collab.) (CLEO Collab.)
BONVICINI BONVICINI DOBBS	08AO 08 08A 08	PRD78051102PRD77091106PRD78052001PRD77112005	B. Aubert <i>et al.</i> G. Bonvicini <i>et al.</i> G. Bonvicini <i>et al.</i> S. Dobbs <i>et al.</i>	(BABAR Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.)
BONVICINI BONVICINI DOBBS Also	08AO 08 08A 08	PR D78 051102 PR D77 091106 PR D78 052001 PR D77 112005 PRL 100 251802	 B. Aubert <i>et al.</i> G. Bonvicini <i>et al.</i> G. Bonvicini <i>et al.</i> S. Dobbs <i>et al.</i> D. Cronin-Hennessy <i>et al.</i> 	(BABAR Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.)
BONVICINI BONVICINI DOBBS Also EISENSTEIN	08AO 08 08A 08 08	PR D78 051102 PR D77 091106 PR D78 052001 PR D77 112005 PRL 100 251802 PR D78 052003	 B. Aubert <i>et al.</i> G. Bonvicini <i>et al.</i> G. Bonvicini <i>et al.</i> S. Dobbs <i>et al.</i> D. Cronin-Hennessy <i>et al.</i> B.I. Eisenstein <i>et al.</i> 	(BABAR Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.)
BONVICINI BONVICINI DOBBS Also EISENSTEIN HE	08AO 08 08A 08 08 08	PR D78 051102 PR D77 091106 PR D78 052001 PR D77 112005 PRL 100 251802 PR D78 052003 PRL 100 091801	 B. Aubert <i>et al.</i> G. Bonvicini <i>et al.</i> G. Bonvicini <i>et al.</i> S. Dobbs <i>et al.</i> D. Cronin-Hennessy <i>et al.</i> B.I. Eisenstein <i>et al.</i> Q. He <i>et al.</i> 	(BABAR Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.)
BONVICINI BONVICINI DOBBS Also EISENSTEIN HE PDG DUBIN	08AO 08 08A 08 08 08 08 08 08	PR D78 051102 PR D77 091106 PR D78 052001 PR D77 112005 PRL 100 251802 PR D78 052003 PRL 100 091801 PL B667 1 PR D78 072002	 B. Aubert <i>et al.</i> G. Bonvicini <i>et al.</i> G. Bonvicini <i>et al.</i> S. Dobbs <i>et al.</i> D. Cronin-Hennessy <i>et al.</i> B.I. Eisenstein <i>et al.</i> Q. He <i>et al.</i> C. Amsler <i>et al.</i> B. Brikin <i>et al.</i> 	(BABAR Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (PDG Collab.) (PDG Collab.)
BONVICINI BONVICINI DOBBS Also EISENSTEIN HE PDG RUBIN ABLIKIM	08AO 08 08A 08 08 08 08 08 08 07	PR D78 051102 PR D77 091106 PR D78 052001 PR D77 112005 PRL 100 251802 PR D78 052003 PRL 100 091801 PL B667 1 PR D78 072003 PL B664 20	 B. Aubert <i>et al.</i> G. Bonvicini <i>et al.</i> G. Bonvicini <i>et al.</i> S. Dobbs <i>et al.</i> D. Cronin-Hennessy <i>et al.</i> B.I. Eisenstein <i>et al.</i> Q. He <i>et al.</i> C. Amsler <i>et al.</i> P. Rubin <i>et al.</i> M. Ablikim <i>et al.</i> 	(BABAR Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (PDG Collab.) (CLEO Collab.) (RES Collab.)
BONVICINI BONVICINI DOBBS Also EISENSTEIN HE PDG RUBIN ABLIKIM ABLIKIM	08AO 08 08A 08 08 08 08 08 07 07G	PR D78 051102 PR D77 091106 PR D78 052001 PR D77 112005 PRL 100 251802 PR D78 052003 PRL 100 091801 PL B667 1 PR D78 072003 PL B644 20 PL B658 1	 B. Aubert et al. G. Bonvicini et al. G. Bonvicini et al. S. Dobbs et al. D. Cronin-Hennessy et al. B.I. Eisenstein et al. Q. He et al. C. Amsler et al. P. Rubin et al. M. Ablikim et al. 	(BABAR Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (BES Collab.)
BONVICINI BONVICINI DOBBS Also EISENSTEIN HE PDG RUBIN ABLIKIM ABLIKIM BONVICINI	08AO 08 08A 08 08 08 08 08 07 07G 07	PR D78 051102 PR D77 091106 PR D78 052001 PR D77 112005 PRL 100 251802 PR D78 052003 PRL 100 091801 PL B667 1 PR D78 072003 PL B644 20 PL B658 1 PR D76 012001	 B. Aubert et al. G. Bonvicini et al. G. Bonvicini et al. S. Dobbs et al. D. Cronin-Hennessy et al. B.I. Eisenstein et al. Q. He et al. C. Amsler et al. P. Rubin et al. M. Ablikim et al. G. Bonvicini et al. 	(BABAR Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (PDG Collab.) (CLEO Collab.) (BES Collab.) (CLEO Collab.)
BONVICINI BONVICINI DOBBS Also EISENSTEIN HE PDG RUBIN ABLIKIM ABLIKIM BONVICINI DOBBS	08AO 08 08A 08 08 08 08 08 08 07 07G 07 07	PR D78 051102 PR D77 091106 PR D77 09106 PR D77 112005 PR D77 112005 PR D78 052003 PRL 100 091801 PL B667 1 PR D78 072003 PL B644 20 PL B658 1 PR D76 012001 PR D76 112001	 B. Aubert et al. G. Bonvicini et al. G. Bonvicini et al. S. Dobbs et al. D. Cronin-Hennessy et al. B.I. Eisenstein et al. Q. He et al. C. Amsler et al. P. Rubin et al. M. Ablikim et al. G. Bonvicini et al. S. Dobbs et al. 	(BABAR Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (BES Collab.) (BES Collab.) (CLEO Collab.) (CLEO Collab.)
BONVICINI BONVICINI DOBBS Also EISENSTEIN HE PDG RUBIN ABLIKIM ABLIKIM BONVICINI DOBBS LINK	08AO 08 08A 08 08 08 08 08 08 08 07 07G 07 07 07 07 07 07 B	PR D78 051102 PR D77 091106 PR D77 09106 PR D77 112005 PR D77 112005 PR D78 052003 PRL 100 091801 PL B667 1 PR D78 072003 PL B644 20 PL B658 1 PR D76 012001 PR D76 112001 PL B653 1	 B. Aubert et al. G. Bonvicini et al. G. Bonvicini et al. S. Dobbs et al. D. Cronin-Hennessy et al. B.I. Eisenstein et al. Q. He et al. C. Amsler et al. P. Rubin et al. M. Ablikim et al. G. Bonvicini et al. S. Dobbs et al. J.M. Link et al. 	(BABAR Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (PDG Collab.) (CLEO Collab.) (BES Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.)
BONVICINI BONVICINI DOBBS Also EISENSTEIN HE PDG RUBIN ABLIKIM ABLIKIM BONVICINI DOBBS LINK ABLIKIM	08AO 08 08A 08 08 08 08 08 07 07G 07 07 07 07 07 07 07 07 07 07 00 06 0	PR D78 051102 PR D77 091106 PR D77 091106 PR D77 112005 PRL 100 251802 PR D78 052003 PRL 100 091801 PL B667 1 PR D78 072003 PL B644 20 PL B658 1 PR D76 112001 PR D76 112001 PL B653 1 EPJ C47 31	 B. Aubert et al. G. Bonvicini et al. G. Bonvicini et al. S. Dobbs et al. D. Cronin-Hennessy et al. B.I. Eisenstein et al. Q. He et al. C. Amsler et al. P. Rubin et al. M. Ablikim et al. G. Bonvicini et al. S. Dobbs et al. J.M. Link et al. M. Ablikim et al. M. Ablikim et al. 	(BABAR Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (BES Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (FNAL FOCUS Collab.) (BES Collab.)
BONVICINI BONVICINI DOBBS Also EISENSTEIN HE PDG RUBIN ABLIKIM ABLIKIM BONVICINI DOBBS LINK ABLIKIM ABLIKIM	08AO 08 08A 08 08 08 08 07 07G 07 07G 07 07B 06O 06P	PR D78 051102 PR D77 091106 PR D77 091106 PR D77 112005 PRL 100 251802 PR D78 052003 PRL 100 091801 PL B667 1 PR D78 072003 PL B644 20 PL B658 1 PR D76 112001 PR D76 112001 PL D76 112001 PL B653 1 EPJ C47 31 EPJ C47 39	 B. Aubert et al. G. Bonvicini et al. G. Bonvicini et al. S. Dobbs et al. D. Cronin-Hennessy et al. B.I. Eisenstein et al. Q. He et al. Q. Amsler et al. P. Rubin et al. M. Ablikim et al. G. Bonvicini et al. S. Dobbs et al. J.M. Link et al. M. Ablikim et al. M. Ablikim et al. M. Ablikim et al. 	(BABAR Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (BES Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (FNAL FOCUS Collab.) (BES Collab.) (BES Collab.)
BONVICINI BONVICINI DOBBS Also EISENSTEIN HE PDG RUBIN ABLIKIM ABLIKIM BONVICINI DOBBS LINK ABLIKIM ABLIKIM ABLIKIM	08AO 08 08A 08 08 08 08 07 07G 07 07G 07 07B 06O 06P 06U	PR D78 051102 PR D77 091106 PR D77 091106 PR D77 112005 PRL 100 251802 PR D78 052003 PRL 100 091801 PL B667 1 PR D78 072003 PL B644 20 PL B658 1 PR D76 012001 PR D76 112001 PL B653 1 EPJ C47 31 EPJ C47 39 PL B643 246	 B. Aubert et al. G. Bonvicini et al. G. Bonvicini et al. S. Dobbs et al. D. Cronin-Hennessy et al. B.I. Eisenstein et al. Q. He et al. C. Amsler et al. P. Rubin et al. M. Ablikim et al. G. Bonvicini et al. S. Dobbs et al. J.M. Link et al. M. Ablikim et al. M. Ablikim et al. M. Ablikim et al. J.M. Link et al. M. Ablikim et al. 	(BABAR Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (BES Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (FNAL FOCUS Collab.) (BES Collab.) (BES Collab.)

AITALA	06	PR D73 032004	E.M. Aitala <i>et al.</i>	(FNAL E791 Collab.)
	06 5	PR D74 059901 (errat.)	E.M. Aitala <i>et al.</i>	(FNAL E791 Collab.)
AUBERT,B	06	PR D74 011107 PR D74 071102	S.A. Dytman <i>et al.</i>	(CLEO Collab.)
HUANG	06B	PR D74 112005	G.S. Huang <i>et al.</i>	(CLEO Collab.)
LINK	06B	PL B637 32	J.M. Link <i>et al.</i>	(FNAL FOCUS Collab.)
RUBIN	06	PRL 96 081802	P. Rubin <i>et al.</i>	(CLEO Collab.)
	06A	PR D73 112005	P. Rubin <i>et al.</i>	(CLEO Collab.)
ABLIKIM	05A 05D	PL B610 183	M Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	05F	PL B622 6	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	05P	PL B625 196	M. Ablikim <i>et al.</i>	(BES Collab.)
ARTUSO	05A	PRL 95 251801	M. Artuso <i>et al.</i>	(CLEO Collab.)
AUBERT	055	PR D/I 091101 PRI 05 121801	B. Aubert <i>et al.</i> O He <i>et al</i>	(BABAR Collab.)
Also	05	PRL 96 199903 (errat.)	Q. He <i>et al.</i>	(CLEO Collab.)
HE	05A	PRL 95 221802	Q. He <i>et al.</i>	(CLEO Collab.)
HUANG	05B	PRL 95 181801	G.S. Huang <i>et al.</i>	(CLEO Collab.)
KAYIS-TOPAK.	05	PL B626 24	A. Kayis-Topaksu <i>et al.</i>	(CERN CHORUS Collab.)
	05E 05I	PL B022 239 PL B621 72	J.M. LINK <i>et al.</i>	(FNAL FOCUS Collab.)
ABLIKIM	04C	PL B597 39	M. Ablikim <i>et al.</i>	(BEPC BES Collab.)
ARMS	04	PR D69 071102	K. Arms <i>et al.</i>	` (CLEO Collab.)́
BONVICINI	04A	PR D70 112004	G. Bonvicini <i>et al.</i>	(CLEO Collab.)
	04 04 E	PL B585 200 PL B508 33	J.M. Link et al.	(FNAL FOCUS Collab.)
LINK	04L 04F	PL B601 10	IM Link et al	(FNAL FOCUS Collab.)
ANISOVICH	03	EPJ A16 229	V.V. Anisovich <i>et al.</i>	(
LINK	03D	PL B561 225	J.M. Link <i>et al.</i>	(FNAL FOCUS Collab.)
LINK	03F	PL B572 21	J.M. Link <i>et al.</i>	(FNAL FOCUS Collab.)
	02	PRL 89 121801 PRI 80 222001	E.M. Altala <i>et al.</i> G. Brandenburg <i>et al.</i>	(FNAL E791 Collab.)
KAYIS-TOPAK.	02	PL B549 48	A. Kavis-Topaksu <i>et al.</i>	(CERN CHORUS Collab.)
LINK	02B	PRL 88 041602	J.M. Link <i>et al.</i>	(FNAL FOCUS Collab.)
Also		PRL 88 159903 (errat.)	J.M. Link <i>et al.</i>	(FNAL FOCUS Collab.)
LINK	02E	PL B535 43	J.M. Link <i>et al.</i>	(FNAL FOCUS Collab.)
	02F 02I	PL B537 192 PL B541 227	J.M. LINK <i>et al.</i>	(FNAL FOCUS Collab.)
LINK	02J	PL B541 243	J.M. Link <i>et al.</i>	(FNAL FOCUS Collab.)
LINK	02L	PL B544 89	J.M. Link <i>et al.</i>	(FNAL FOCUS Collab.)
AITALA	01B	PRL 86 770	E.M. Aitala <i>et al.</i>	(FNAL E791 Collab.)
	01C	PRL 87 162001 FPL C12 200	J.M. Link <i>et al.</i> P. Abreu <i>et al.</i>	(FNAL FOCUS Collab.)
ASTIER	000 00D	PL B486 35	P. Astier <i>et al.</i>	(CERN NOMAD Collab.)
JUN	00	PRL 84 1857	S.Y. Jun <i>et al.</i>	(FNAL SELEX Collab.)
LINK	00B	PL B491 232	J.M. Link <i>et al.</i>	(FNAL FOCUS Collab.)
Also	001/	PL B495 443 (errat.)	J.M. Link <i>et al.</i>	(FNAL FOCUS Collab.)
	99N 00	EPJ C8 573 FPI C6 35	G. Addiendi <i>et al.</i> M. Adamovich <i>et al.</i>	(CERN BEATRICE Collab.)
AITALA	99G	PL B462 401	E.M. Aitala <i>et al.</i>	(FNAL E791 Collab.)
BONVICINI	99	PRL 82 4586	G. Bonvicini <i>et al.</i>	` (CLEO Collab.)́
AITALA	98B	PRL 80 1393	E.M. Aitala <i>et al.</i>	(FNAL E791 Collab.)
	98C	PL B421 405	E.M. Aitala <i>et al.</i>	(FNAL E791 Collab.)
BAI	90F 98B	PL B429 188	LT Bai <i>et al</i>	(BEPC BES Collab.)
AITALA	97	PL B397 325	E.M. Aitala <i>et al.</i>	(FNAL E791 Collab.)
AITALA	97B	PL B403 377	E.M. Aitala <i>et al.</i>	(FNAL E791 Collab.)
AITALA	97C	PL B404 187	E.M. Aitala <i>et al.</i>	(FNAL E791 Collab.)
	97 07	PRL 78 3201 PL B301 235	M. Bishai <i>et al.</i> Pl. Frabetti <i>et al</i>	(CLEO Collab.) (ENAL E687 Collab.)
FRABETTI	97B	PL B398 239	P.L. Frabetti <i>et al.</i>	(FNAL E687 Collab.)
FRABETTI	97C	PL B401 131	P.L. Frabetti <i>et al.</i>	(FNAL E687 Collab.)
FRABETTI	97D	PL B407 79	P.L. Frabetti <i>et al.</i>	(FNAL E687 Collab.)
	96 05	PRL /0 364 DL B346 100	E.M. Aitala <i>et al.</i>	(FNAL E791 Collab.)
FRABETTI	95 95R	PL B351 591	P.L. Frabetti <i>et al</i>	(FNAL E007 Collab.)
FRABETTI	95E	PL B359 403	P.L. Frabetti <i>et al.</i>	(FNAL E687 Collab.)
KODAMA	95	PL B345 85	K. Kodama <i>et al.</i>	(FNAL E653 Collab.)
ALBRECHT	94I	ZPHY C64 375	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
FRARETTI	94 94 N	FIL 72 2320 PL B323 459	n. Dalesi <i>et al.</i> Pl. Frabetti <i>et al</i>	(CLEU COllab.) (FNAL F687 Collab.)
	5.0	. 2 8020 100		

FRABETTI	94G	PL B331 217	P.L. Frabetti <i>et al.</i>	(FNAL E687 Collab.)
FRABETTI	941	PR D50 2953	P.L. Frabetti <i>et al.</i>	(FNAL E687 Collab.)
AKERIB	93	PRL 71 3070	D.S. Akerib <i>et al.</i>	(CLEO Collab.)
ANJOS	93	PR D48 56	J.C. Anios <i>et al.</i>	(FNAL E691 Collab.)
FRABETTI	93E	PL B307 262	P.L. Frabetti <i>et al.</i>	(FNAL E687 Collab.)
ALBRECHT	92F	PL B278 202	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
BARLAG	92C	7PHY C55 383	S Barlag <i>et al</i>	(ACCMOR Collab.)
Also	520	7PHY C48 29	S Barlag et al	(ACCMOR Collab.)
COFEMAN	92B	PR D45 2196	D.M. Coffman <i>et al</i>	(Mark III Collab.)
DAOUDI	92	PR D45 3965	M Daoudi <i>et al</i>	(CLEO Collab.)
KODAMA	92	PI B274 246	K Kodama <i>et al</i>	(ENAL E653 Collab.)
KODAMA	92C	PL B286 187	K Kodama et al	(FNAL E653 Collab.)
	01	PL B268 142	M L Adamovich et al	(WA82 Collab.)
ALBRECHT	01	PL B255 634	H Albrecht et al	(ARGUS Collab.)
	91 91R	7PHY C50 11	M P Alvarez et al	(CERN NA14/2 Collab.)
	01	PR D44 3383	R Ammar <i>et al</i>	(CLEO Collab.)
RAI	01	PRI 66 1011	7 Bai et al	(Mark III Collab.)
	01	DI R263 135	D.M. Coffman at al	(Mark III Collab.)
	91 01	DI D262 594	D. Erabetti et al	(Mark III Collab.)
	91	7DHV C17 530	M.P. Alvaroz et al	(CERN NA14/2 Collab.)
	90 00C	DD D41 0705	IC Aprice of al	(CERN RA14/2 Collab.)
	90C	PR D41 2705	J.C. Anjos et al.	(FNAL E091 Collab.)
ANJOS	90D	PR D42 2414	J.C. Anjos et al.	(FNAL E601 Collab.)
ANJUS	90E	7DUX C46 562	J.C. Anjos <i>et al.</i>	(FINAL E091 COND.)
	90C	ZPHT C40 303	S. Darlag et al.	(Mark II Callab.)
	90D	PR D41 1304	A.J. Welf et al.	(IVIAR II COILAD.)
ANJOS	09	PRL 02 125	J.C. Anjos <i>et al.</i>	(FNAL E091 Collab.)
ANJOS	89B	PRL 02 722	J.C. Anjos <i>et al.</i>	(FNAL E091 Collab.)
	89E	PL B223 207	J.C. Anjos <i>et al.</i>	(FNAL E091 Collab.)
	200	PRL 00 89	J. Adler <i>et al.</i>	(INIARK III COIIAD.)
	00	PL B2IU 207	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
	00	PRL 00 1014	P. Haas et al.	(CLEO Collab.)
	00	PRL 00 2587	R.A. Ung et al.	(IVIAR II COIIAD.)
RAAB	88	PR D37 2391	J.R. Raab <i>et al.</i>	(FNAL E091 Collab.)
	87 07	EPL 4 887	IVI.I. Adamovich <i>et al.</i>	(Photon Emulsion Collab.)
ADLER	87 07	PL B190 107	J. Adler <i>et al.</i>	
BARTEL	87	ZPHY C33 339	VV. Bartel <i>et al.</i>	(JADE Collab.)
BALTRUSAIT	80E	PRL 56 2140	R.M. Baltrusaitis <i>et al.</i>	(Mark III Collab.)
BALTRUSAIT	85B	PRL 54 1976	R.W. Baltrusaitis <i>et al.</i>	(Mark III Collab.)
BALIRUSAII	85E	PRL 55 150	R.IVI. Baltrusaitis <i>et al.</i>	(Mark III Collab.)
BARIEL	85J	PL 103B 277	VV. Bartel et al.	
ADAMOVICH	84	PL 140B 119	M.I. Adamovich <i>et al.</i>	(CERN WA58 Collab.)
ALTHOFF	84G	ZPHY C22 219	M. Althoff <i>et al.</i>	(TASSO Collab.)
	84	PRL 53 1971	M. Derrick et al.	(HRS Collab.)
SCHINDLER	81	PR D24 78	R.H. Schindler <i>et al.</i>	(IVIark II Collab.)
TRILLING	81	PRPL 75 57	G.H. Trilling	(LBL, UCB) J
ZHOLENTZ	80	PL 96B 214	A.A. Zholents <i>et al.</i>	(NOVO)
Also		SJNP 34 814	A.A. Zholents <i>et al.</i>	(NOVO)
	77	DL COD FO2	$\begin{array}{c} 14/1. \\ C C \text{oblack an } st s/ \end{array}$	
	77	FL 09D 303 DDI 20 1201	L Doruzzi et al	(IVIARK I COLLAD.)
	77	FIL 39 1301	I. Feruzzi et al. M. Discolo at al	(LGVV Collab.)
	11 76	FL (UD 200 DDI 27 560	IVI. r ICCOIO eL al.	(IVIARK I COLLAD.)
	10	FNL 31 309 Am Stat 2 No E 20	I. Feruzzi et al. D.A. Eichor E. Maatallar	(Wark I Collab.)
WOSTELLER	40	Am. Stat. S NO.5 30	N.A. FISHER, F. WIOSTEHER	

- OTHER RELATED PAPERS -

RICHMAN95RMP 67 893J.D. Richman, P.R. Burchat(UCSB, STAN)ROSNER95CNPP 21 369J. Rosner(CHIC)	RICHMAN	95	RMP 67 893	J.D. Richman, P.R. Burchat	(UCSB, STAN)
	ROSNER	95	CNPP 21 369	J. Rosner	(CHIC)