V_{cb} and V_{ub} CKM Matrix Elements

OMITTED FROM SUMMARY TABLE

See the related review(s):

Semileptonic B Hadron Decays, Determination of V_{cb} and V_{ub}

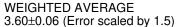
V_{ch} MEASUREMENTS

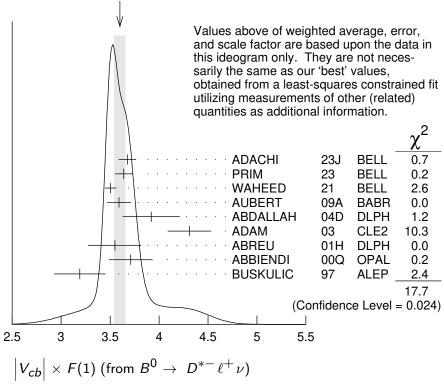
For the discussion of V_{cb} measurements, which is not repeated here, see the review on "Determination of $|V_{ch}|$ and $|V_{uh}|$."

The CKM matrix element $|V_{ch}|$ can be determined by studying the rate of the semileptonic decay $B \to D^{(*)} \ell \nu$ as a function of the recoil kinematics of $D^{(*)}$ mesons. Taking advantage of theoretical constraints on the normalization and a linear ω dependence of the form factors $(F(\omega), G(\omega))$ provided by Heavy Quark Effective Theory (HQET), the $|V_{Ch}| \times F(\omega)$ and ho^2 can be simultaneously extracted from data, where ω is the scalar product of the two-meson four velocities, F(1) is the form factor at zero recoil $(\omega=1)$ and ρ^2 is the slope. Using the theoretical input of F(1), a value of $|V_{ch}|$ can be obtained.

$|V_{cb}| \times F(1)$ (from $B^0 \rightarrow D^{*-}\ell^+\nu$)

```
VALUE (units 10^{-2})
                                       DOCUMENT ID
                                                             TECN COMMENT
                                          (Produced by HFLAV) with 
ho^2=1.139\pm0.020 and a
3.534\pm0.037 OUR EVALUATION
correlation 0.268. The fitted \chi^2 is 63.2 for 27 degrees of freedom.
3.60 \pm0.06 OUR AVERAGE Error includes scale factor of 1.5. See the ideogram below.
                                     <sup>1</sup> ADACHI
                                                         23J BELL e^+e^- \rightarrow \Upsilon(4S)
3.676 \pm 0.028 \pm 0.086
                                     <sup>2</sup> PRIM
                                                         23
                                                                BELL e^+e^- \rightarrow \Upsilon(4S)
3.64 \pm 0.09
                                     <sup>3</sup> WAHEED
                                                         21
                                                                BELL
                                                                         e^+e^- \rightarrow \Upsilon(4S)
3.506 \pm 0.015 \pm 0.056
                                     <sup>4</sup> AUBERT
                                                         09A BABR e^+e^- \rightarrow \Upsilon(4S)
3.59 \pm 0.02 \pm 0.12
                                     <sup>5</sup> ABDALLAH
                                                         04D DLPH e^+e^- \rightarrow Z^0
3.92 \pm 0.18 \pm 0.23
                                     <sup>6</sup> ADAM
                                                                CLE2
                                                                         e^+e^- 
ightarrow \gamma(4S)
4.31 \pm 0.13 \pm 0.18
              +0.23
                                     <sup>7</sup> ABREU
                                                         01H DLPH e^+e^- \rightarrow
3.55 \pm 0.14
                                     <sup>8</sup> ABBIENDI
                                                         000 OPAL
3.71 \pm 0.10 \pm 0.20
                                     <sup>9</sup> BUSKULIC
3.19 \pm 0.18 \pm 0.19
                                                                ALEP


    • • We do not use the following data for averages, fits, limits, etc.


                                     3 WAHEED
3.483 \pm 0.015 \pm 0.056
                                                                BELL
                                                                         Repl. by WAHEED 21
                                    <sup>10</sup> DUNGEL
3.46 \pm 0.02 \pm 0.10
                                                                BELL
                                                                         Rep. by WAHEED 19
                                    <sup>11</sup> AUBERT
                                                         08AT BABR Repl. by AUBERT 09A
3.59 \pm 0.06 \pm 0.14
                                    <sup>12</sup> AUBERT
                                                         08R BABR Repl. by AUBERT 09A
3.44 \pm 0.03 \pm 0.11
                                    <sup>13</sup> AUBERT
                                                         05E BABR Repl. by AUBERT 08R
3.55 \pm 0.03 \pm 0.16
                                    <sup>14</sup> ABDALLAH
                                                                         e^+e^- \rightarrow Z^0
3.77 \pm 0.11 \pm 0.19
                                                               DLPH
                                    <sup>15</sup> ABE
                                                                         Repl. by DUNGEL 10
                                                                BELL
3.54 \pm 0.19 \pm 0.18
4.31 \pm 0.13 \pm 0.18
                                    <sup>16</sup> BRIERE
                                                         02
                                                                CLE2
                                                                         e^+e^- \rightarrow \Upsilon(4S)
3.28 \pm 0.19 \pm 0.22
                                       ACKERSTAFF 97G OPAL
                                                                        Repl. by ABBIENDI 00Q
```

https://pdg.lbl.gov

Page 1

$3.50 \pm 0.19 \pm 0.23$	¹⁷ ABREU	96P	DLPH	Repl. by ABREU 01H
$3.51 \pm 0.19 \pm 0.20$	¹⁸ BARISH	95	CLE2	Repl. by ADAM 03
$3.14 \pm 0.23 \pm 0.25$	BUSKULIC	95N	AI FP	Repl. by BUSKULIC 97

- ¹ Measured from differential shapes of exclusive $B o D^* \ell^- \nu_\ell$ ($\ell = e$ or μ) decays. Using CNL form factor parametrization and the zero-recoil lattice QCD point $F(1)=0.906\pm$ 0.013 ADACHI 23J finds $|V_{cb}|_{CNL}=(40.57\pm0.31\pm0.95\pm0.58)\times10^{-3}$ where the last uncertainty is due to the prediction of F(1). Also reports a measurement of $|V_{cb}|_{BGL}$ = $(40.13 \pm 0.27 \pm 0.93 \pm 0.58) \times 10^{-3}$ using BGL form factors parametrization.
- 2 Measured from differential shapes of exclusive $B\to D^*\ell^-\nu_\ell$ decays with hadronic tagside reconstruction and extracting the CNL and BGL form factor parameters. PRIM 23 finds $|\mathsf{V}_{cb}|_{CNL}=(40.2\pm0.9)\times10^{-3}$ with the zero-recoil lattice QCD point $\mathit{F}(1)=10^{-3}$ 0.906 \pm 0.013. PRIM 23 provides also a measurement of $|{
 m V}_{cb}|_{BGL}$ = (40.7 \pm 1.0) imes 10^{-3}
- 3 WAHEED 21 uses fully reconstructed $D^{*-}\ell^+\nu$ events ($\ell=e$ or μ) and $\eta_{EW}=1.0066$.
- ⁴Obtained from a global fit to $B \to D^{(*)} \ell \nu_{\ell}$ events, with reconstructed $D^{0} \ell$ and $D^{+} \ell$ final states and $\rho^2 = 1.22 \pm 0.02 \pm 0.07$.
- 5 Measurement using fully reconstructed D^* sample with a $\rho^2=1.32\pm0.15\pm0.33$. 6 Average of the $B^0\to D^*(2010)^-\ell^+\nu$ and $B^+\to \overline D^*(2007))\ell^+\nu$ modes with $\rho^2=1.61\pm0.09\pm0.21$ and $f_{+-}=0.521\pm0.012$.
- 7 ABREU 01H measured using about 5000 partial reconstructed D^* sample with a $ho^2 = 1.34 \pm 0.14 ^{+0.24}_{-0.22}$
- 8 ABBIENDI 00Q: measured using both inclusively and exclusively reconstructed $D^{*\pm}$ samples with a $ho^2=1.21\pm0.12\pm0.20$. The statistical and systematic correlations between $|V_{ch}| \times F(1)$ and ρ^2 are 0.90 and 0.54 respectively.

- ⁹ BUSKULIC 97: measured using exclusively reconstructed $D^{*\pm}$ with a a^2 =0.31 \pm 0.17 \pm 0.08. The statistical correlation is 0.92.
- 0.08. The statistical correlation is 0.92. 10 Uses fully reconstructed $D^{*-}\ell^+\nu$ events ($\ell=e$ or μ).
- ¹¹ Measured using the dependence of $B^- \to D^{*0} \, e^{-\nu}_{e}$ decay differential rate and the form factor description by CAPRINI 98 with $\rho^2 = 1.16 \pm 0.06 \pm 0.08$.
- Measured using fully reconstructed D^* sample and a simultaneous fit to the Caprini-Lellouch-Neubert form factor parameters: $\rho^2=1.191\pm0.048\pm0.028$, $R_1(1)=1.429\pm0.061\pm0.044$, and $R_2(1)=0.827\pm0.038\pm0.022$.
- Measurement using fully reconstructed D^* sample with a $ho^2=1.29\pm0.03\pm0.27$.
- 14 Combines with previous partial reconstructed D^* measurement with a $ho^2=1.39\pm0.10\pm0.33$
- ¹⁵ Measured using exclusive $B^0 \rightarrow D^*(892)^- e^+ \nu$ decays with $\rho^2 = 1.35 \pm 0.17 \pm 0.19$ and a correlation of 0.91.
- and a correlation of 0.91.

 16 BRIERE 02 result is based on the same analysis and data sample reported in ADAM 03.
- 17 ABREU 96P: measured using both inclusively and exclusively reconstructed $D^{*\pm}$ samples.
- ¹⁸ BARISH 95: measured using both exclusive reconstructed $B^0 \to D^{*-}\ell^+\nu$ and $B^+\to D^{*0}\ell^+\nu$ samples. They report their experiment's uncertainties $\pm 0.0019 \pm 0.0018 \pm 0.0008$, where the first error is statistical, the second is systematic, and the third is the uncertainty in the lifetimes. We combine the last two in quadrature.

$|V_{cb}| \times G(1) \text{ (from } B \rightarrow D^- \ell^+ \nu)$

VALUE (units 10⁻²) DOCUMENT ID TECN COMMENT

4.121 \pm 0.100 OUR EVALUATION (Produced by HFLAV) with ρ^2 = 1.128 \pm 0.033 and a correlation 0.747. The fitted χ^2 is 4.8 for 8 degrees of freedom.

4.22 ±0.10 OUR AVERAGE

4.229 ± 0.137	$^{ m 1}$ GLATTAUER	16	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$4.23 \pm 0.19 \pm 0.14$	² AUBERT	10	BABR	$e^+e^- ightarrow$	$\Upsilon(4S)$
$4.31 \pm 0.08 \pm 0.23$	³ AUBERT	09A	BABR	$e^+e^- ightarrow$	$\Upsilon(4S)$
$4.16 \pm 0.47 \pm 0.37$	⁴ BARTELT	99	CLE2	$e^+e^- ightarrow$	$\Upsilon(4S)$
$2.78 \pm 0.68 \pm 0.65$	⁵ BUSKULIC	97	ALEP	$e^+e^- \rightarrow$	Z

• • We do not use the following data for averages, fits, limits, etc. • •

$$4.11 \pm 0.44 \pm 0.52$$
 6 ABE $02E$ BELL Repl. by GLATTAUER 16 $3.37 \pm 0.44 \stackrel{+0.72}{-0.49}$ 7 ATHANAS 97 CLE2 Repl. by BARTELT 99

- ¹ Obtained from a fit to the combined partially reconstructed $B \to \overline{D}\ell\nu_\ell$ sample while tagged by the other fully reconstructed B meson in the event. Also reports fitted $\rho^2 = 1.09 \pm 0.05$.
- ² Obtained from a fit to the combined $B \to \overline{D}\ell^+\nu_\ell$ sample in which a hadronic decay of the second B meson is fully reconstructed and $\rho^2=1.20\pm0.09\pm0.04$.
- ³ Obtained from a global fit to $B \to D^{(*)} \ell \nu_{\ell}$ events, with reconstructed $D^0 \ell$ and $D^+ \ell$ final states and $\rho^2 = 1.20 \pm 0.04 \pm 0.07$.
- ⁴ BARTELT 99: measured using both exclusive reconstructed $B^0 \to D^- \ell^+ \nu$ and $B^+ \to D^0 \ell^+ \nu$ samples.
- ⁵ BUSKULIC 97: measured using exclusively reconstructed D^{\pm} with a $a^2=-0.05\pm0.53\pm0.38$. The statistical correlation is 0.99.
- 0.38. The statistical correlation is 0.99.
 6 Using the missing energy and momentum to extract kinematic information about the undetected neutrino in the $B^0 \to D^- \ell^+ \nu$ decay.
- ⁷ ATHANAS 97: measured using both exclusive reconstructed $B^0 \to D^- \ell^+ \nu$ and $B^+ \to D^0 \ell^+ \nu$ samples with a $\rho^2 = 0.59 \pm 0.22 \pm 0.12^{+0.59}_{-0}$. They report their experiment's uncertainties $\pm 0.0044 \pm 0.0048^{+0.0053}_{-0.0012}$, where the first error is statistical, the second is systematic, and the third is the uncertainty due to the form factor model variations. We combine the last two in quadrature.

$|V_{cb}|$ (from $D_s^{*-}\mu^+\nu_\mu$)

 VALUE (units 10^{-3})
 DOCUMENT ID
 TECN
 COMMENT

 41.4 \pm 0.6 \pm 0.9 \pm 1.2
 1 AAIJ
 20E
 LHCB
 pp at 7, 8 TeV

Vub MEASUREMENTS

For the discussion of V_{ub} measurements, which is not repeated here, see the review on "Determination of $|V_{cb}|$ and $|V_{ub}|$."

The CKM matrix element $|V_{ub}|$ can be determined by studying the rate of the charmless semileptonic decay $b \to u\ell\nu$. The relevant branching ratio measurements based on exclusive and inclusive decays can be found in the B Listings, and are not repeated here.

V_{cb} and V_{ub} CKM Matrix Elements REFERENCES

 $^{^1}$ Measured from an inclusive sample of $D_s^-\,\mu^+$ candidates using CNL parameterization of the form factor. AAIJ 20E provides also measurement of $|{\rm V}_{cb}|=$ (42.3 \pm 0.8 \pm 0.9 \pm 1.2) \times 10 $^{-3}$ using BGL parameterization of the form factor. The third uncertainty is due to the external inputs used in the measurement.