$$I(J^P) = 0(\frac{1}{2}^+)$$

Charge
$$= \frac{2}{3} e$$
 Top $= +1$

See the related review(s): Top Quark

t-QUARK MASS

We first list the direct measurements of the top quark mass which employ the event kinematics and then list the measurements which extract a top quark mass from the measured $t\bar{t}$ cross-section using theory calculations. A discussion of the definition of the top quark mass in these measurements can be found in the review "The Top Quark."

For earlier search limits see PDG 96, Physical Review **D54** 1 (1996). We no longer include a compilation of indirect top mass determinations from Standard Model Electroweak fits in the Listings (our last compilation can be found in the Listings of the 2007 partial update). For a discussion of current results see the reviews "The Top Quark" and "Electroweak Model and Constraints on New Physics."

t-Quark Mass (Direct Measurements)

The following measurements extract a *t*-quark mass from the kinematics of $t\bar{t}$ events. They are sensitive to the top quark mass used in the MC generator that is usually interpreted as the pole mass, but the theoretical uncertainty in this interpretation is hard to quantify. See the review "The Top Quark" and references therein for more information.

OUR AVERAGE of 172.57 \pm 0.29 GeV is an average of top mass measurements from LHC and Tevatron Runs. The latest Tevatron average, 174.30 \pm 0.35 \pm 0.54 GeV, was provided by the Tevatron Electroweak Working Group (TEVEWWG).

VALUE (GeV)	DOCUMENT ID	TECN	COMMENT
	RAGE Error inclu	des scale fact	or of 1.5. See the ideogram
below.	1		
$174.41\pm~0.39\pm~0.71$	¹ AAD	23N ATLS	leptonic invariant mass in $\ell+$ jets channel
171.77 ± 0.37	² TUMASYAN	23BB CMS	$\ell + \ge 4$ j (2 <i>b</i>)
$173.06 \pm \ 0.24 \pm \ 0.80$	³ TUMASYAN	23z CMS	boosted top; ℓ +jets channel
$172.13^+_{0.77}$	⁴ TUMASYAN	21G CMS	t-channel single top production
172.6 \pm 2.5	⁵ SIRUNYAN	20AR CMS	jet mass from boosted top
$172.69 \pm \ 0.25 \pm \ 0.41$	⁶ AABOUD	19AC ATLS	7, 8 TeV ATLAS combination
$172.34 \pm \ 0.20 \pm \ 0.70$	⁷ SIRUNYAN	19AP CMS	\geq 6 jets (\geq 2 <i>b</i>)
$172.33 \pm \ 0.14 {+}{-} \ 0.66 \\ - \ 0.72$	⁸ SIRUNYAN	19AR CMS	dilepton channel ($e\mu$, 2 e , 2 μ)
$172.44 \pm \ 0.13 \pm \ 0.47$	⁹ KHACHATRY	16AK CMS	7, 8 TeV CMS combination
$174.30\pm~0.35\pm~0.54$	¹⁰ TEVEWWG	16 TEVA	Tevatron combination
$\bullet \bullet \bullet$ We do not use the	following data for a	averages, fits,	limits, etc. • • •
$172.08 \pm \ 0.39 \pm \ 0.82$	11 AABOUD	19AC ATLS	ℓ + \geq 4j (2 <i>b</i>)
$172.26 \pm \ 0.07 \pm \ 0.61$	¹² SIRUNYAN	19AP CMS	lepton+jets, all-jets channels
$172.25 \pm \ 0.08 \pm \ 0.62$	¹³ SIRUNYAN	18DE CMS	$\ell + \ge 4$ j (2 <i>b</i>)

https://pdg.lbl.gov

$173.72\pm$	$0.55\pm$	1.01	14	AABOUD	17AH	ATLS	\geq 5 jet
$174.95\pm$	$0.40\pm$	0.64		ABAZOV	17 B	D0	$\ell + jets$
$172.95\pm$	0.77^{+}_{-}	0.97 0.93	16	SIRUNYAN	17L	CMS	<i>t</i> -chanr
170.8 \pm	9.0		17	SIRUNYAN	17N	CMS	jet mas even
$172.22\pm$	$0.18 \mathop{-}^+$	0.89 0.93		SIRUNYAN	170	CMS	Dilepto
$172.99\pm$	$0.41\pm$	0.74	19	AABOUD		ATLS	dileptor
	$0.34\pm$	0.61	20	AABOUD		ATLS	combin
	$1.36\pm$	0.85	21	ABAZOV	16	D0	$\ell\ell + \not\!$
	$1.61\pm$	0.88		ABAZOV	16 D	D0	$\ell\ell + \not\!$
$172.35\pm$		0.48	23,24	KHACHATRY.	.16AK	CMS	$\ell + \geq 4$
	$0.25\pm$	0.59	23,24	KHACHATRY.	.16AK	CMS	\geq 6 jet
$172.82\pm$	$0.19\pm$	1.22		KHACHATRY			(ee/ $\mu\mu$
$173.68\pm$	0.20^{+}_{-}	1.58 0.97		KHACHATRY			semi- +
173.5 \pm	3.0 ±	0.9	27	KHACHATRY	. 16 СВ	CMS	$t ightarrow$ () J/ψ
175.1 \pm	1.4 +	1.2	28	AAD	15AW	ATLS	small $\not\!$
172.99±				AAD		ATLS	ℓ + jets
171.5 ±		2.5		AALTONEN	15D		$\ell\ell + \not\!$
$175.07\pm$	1.19^{+}_{-}	$1.55 \\ 1.58$		AALTONEN	14N	CDF	small 🖉
	$0.58\pm$		32	ABAZOV	14C	D0	$\ell + \not\!\! E_T$
$173.49\pm$	$0.69\pm$	1.21	33	CHATRCHYAN	14C	CMS	\geq 6 jet
$173.93\pm$	$1.64\pm$	0.87	34	AALTONEN	13H	CDF	$E_T +$
173.9 \pm	$0.9 \ \ -\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	1.7 2.1		CHATRCHYAN	13S	CMS	$\ell\ell + \not\!\! E_T$
174.5 \pm	$0.6\ \pm$	2.3		AAD	121	ATLS	$\ell + \not\!\! E_T +$
$172.85\pm$	$0.71\pm$	0.85	37	AALTONEN	12AI		$\ell + \not\!\! E_T +$
172.7 \pm	$9.3 \pm$	3.7	38	AALTONEN	12al		$\tau_h + E$
	$0.56\pm$	0.75	39	AALTONEN		TEVA	CDF, D
$172.5 \pm$	1.4 \pm	1.5	40	AALTONEN	12G		6–8 jets
	$2.8 \pm$	1.5	41	ABAZOV	12AB		$\ell\ell + \not\!\!\!E_{\ell}$
	$1.9~\pm$	1.6		ABAZOV	12AB		$\ell\ell + E_T$
172.5 \pm				CHATRCHYAN			$\ell\ell + E_T$
$173.49\pm$			44	CHATRCHYAN	12BP	CMS	$\ell + \not\!\! E_T +$
172.4 ±			45	AALTONEN	11AC	CDF	$\ell + E_T$
172.3 ±			40	AALTONEN	11AK		Repl. b
172.1 ±			48	AALTONEN		CDF	ℓ + jets
176.9 \pm	8.0 ±	2.7	10	AALTONEN	111	CDF	$\ell + \not\!$
$174.94\pm$	0.83 +	1.24	49	ABAZOV	11P	D0	$\ell + E_T$
	$1.8 \pm$		50	ABAZOV	11R	D0	dileptor
$175.5 \pm$			51	CHATRCHYAN			dileptor
173.0 \pm			52	AALTONEN		CDF	$\ell + E_T$
169.3 \pm	27 -	2 1	53	AALTONEN	100	CDE	ME
$109.3 \pm 170.7 \pm$				AALTONEN	10C	CDF CDF	dileptor $\ell + \not\!\! E_T$
		2.0 1.2					-
174.8 \pm	2.4 _	1.0		AALTONEN	10E	CDF	\geq 6 jet
180.5 ± 1	12.0 \pm	3.6	56	AALTONEN		CDF	$\ell + \not\!\! E_T$
172.7 \pm	$1.8 \pm$	1.2	57	AALTONEN	09J	CDF	$\ell + E_T$
https://	ماحالا	~~~		Page 2	r		Creat
IILLUS: / /	pug'ibi	1.gov		rage.	<u>~</u>		Creat

ets (2b)ts and dilepton channels nel single top production ss in highly-boosted $t \overline{t}$ nts on channel on channel nation of ATLAS $\mathbb{Z}_T + \geq 2j \ (\geq 2b)$ $\mathbb{Z}_T + \geq 2 j \ (\geq 2b)$ 4j (2b) ets (2b)+ di-leptonic channels $W \rightarrow \ell \nu (b \rightarrow$ $bX \rightarrow \mu^+ \mu^- X$) ts and dilepton $\mathbb{Z}_T + \ge 2j$ T + 4 jets (≥ 1 *b*-tag) ets ($\geq 2 \ b$ -tag) \geq 4 jets (\geq 1 b) $T_{T}^{+} \geq 2b$ -tag (MT2_(T)) $+ \geq$ 4 jets (\geq 1 *b*), MT $+ \geq$ 4j (0,1,2b) template \mathbb{E}_T +4j ($\geq 1b$) D0 combination ts with > 1 b $\mathcal{E}_T + \geq 2 j (\nu WT)$ $\nu + \geq 2j (\nu WT + MWT)$ $m+\geq 2$ j ($\geq 1b$), AMWT $+ \ge 4j (\ge 2b)$ $_T$ + 4 jets (≥ 1 *b*-tag) by AALTONEN 13H ts and dilepton $_T$ + 4 jets (≥ 1 *b*-tag), (ℓ) shape $_T$ + 4 jets (\geq 1 *b*-tag) $_T$ + 4 jets (\geq 1 *b*-tag), method n + b-tag (MT2+NWA) $_T$ + 4 jets (*b*-tag) ets, vtx *b*-tag T + jets (soft μ b-tag) T + 4 jets (*b*-tag)

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$egin{array}{cccc} \pm & 1.1 & 5 \ \pm & 2.9 & 6 \end{array}$	⁸ AALTONEN ⁹ AALTONEN ⁰ AALTONEN	09∟ 090	CDF	6 jets, vtx <i>b</i> -tag ℓ + jets, $\ell\ell$ + jets dilepton
165.5 + 3.4 - 3.3		AALTONEN		CDF	$\ell\ell + E_T (\nu\phi \text{ weighting})$
$174.7 \pm 4.4 \pm 4.2$		² ABAZOV	09ah		dilepton + <i>b</i> -tag (ν WT+MWT)
170.7 + 4.2 - 3.9		⁴ AALTONEN	08C	CDF	dilepton, $\sigma_t \overline{t}$ constrained
$171.5 \pm 1.8 \pm 177.1 \pm 4.9 \pm 1100$	± 4.7 66,6	⁵ ABAZOV ⁷ AALTONEN	08AH 07	D0 CDF	$\ell + ot\!$
$172.3 \begin{array}{c} +10.8 \\ -9.6 \end{array}$	± 10.8 6	⁸ AALTONEN	07 B	CDF	\geq 4 jets (<i>b</i> -tag)
$174.0 \pm 2.2 \pm 170.8 \pm 2.2 \pm 2.2$		⁹ AALTONEN ¹ AALTONEN	07d 07i	CDF CDF	\geq 6 jets, vtx <i>b</i> -tag lepton + jets (<i>b</i> -tag)
173.7 ± 4.4	+ 2.1 67,7	² ABAZOV	07F	D0	lepton + jets
$176.2 \pm 9.2 \pm 179.5 \pm 7.4 \pm 164.5 \pm 3.9 \pm 100$	± 5.6 7	⁷³ ABAZOV ⁷³ ABAZOV ⁷⁴ ABULENCIA	07W 07W 07D		dilepton (MWT) dilepton (ν WT) dilepton
$180.7 \begin{array}{c} +15.5 \\ -13.4 \end{array}$	± 8.6 7	^{′5} ABULENCIA	07J	CDF	lepton + jets
170.3 + 4.1 - 4.5		⁶ ABAZOV	06 ∪	D0	lepton + jets (b-tag)
173.2 + 2.6 - 2.4	± 3.2 77,7	^{'8} ABULENCIA	06 D	CDF	lepton + jets
$173.5 \ + \ 3.7 \ - \ 3.6 \ + \ 3.7$		⁷ ABULENCIA	06 D	CDF	lepton + jets
165.2 ± 6.1	C A O	⁹ ABULENCIA	06 G	CDF	dilepton
$170.1 \pm 6.0 =$		⁰ ABULENCIA ² ABAZOV		CDF	dilepton
$178.5 \pm 13.7 \pm 180.1 \pm 3.6 \pm 100$	$\pm 1.1 01,0$	²⁴ ABAZOV	05	D0	6 or more jets
$180.1 \pm 3.0 \pm 176.1 \pm 5.1 \pm 5.1$		⁵ AFFOLDER	04G 01	CDF	lepton + jets
176.1 ± 6.6		⁶ AFFOLDER	01	CDF	lepton + jets dilepton, lepton+jets, all-jets
170.1 ± 0.0 $172.1 \pm 5.2 \pm$		³⁷ ABBOTT	99G		di-lepton, lepton+jets
172.1 ± 0.2 176.0 ± 0.5	88,8	⁹ ABE	99B	CDF	dilepton, lepton+jets, all-jets
$167.4 \pm 10.3 \pm$	00.0	⁰ ABE		CDF	dilepton
168.4 ± 12.3		⁴ ABBOTT	98D	D0	dilepton
173.3 ± 5.6	+ 5.5 84,9	¹ ABBOTT	98F	D0	lepton + jets
175.9 \pm 4.8 \pm	\pm 5.3 90,9	² ABE	98E	CDF	lepton + jets
161 ± 17 :	±10 ^g	⁰ ABE	98F	CDF	dilepton
$172.1~\pm~5.2$:	\pm 4.9 9	³ BHAT	98 B	RVUE	dilepton and lepton+jets
$173.8~\pm~5.0$		¹⁴ BHAT	98 B	RVUE	dilepton, lepton+jets, all-jets
	± 6.2 8	⁴ ABACHI	97e	D0	lepton + jets
	\pm 5.7 90,9	⁹⁵ ABE	97 R	CDF	6 or more jets
-21	±22	ABACHI	95 05-	D0	lepton + jets
	± 10	ABE	95F	CDF	lepton $+ b$ -jet
174 ±10	+13 -12	ABE	94E	CDF	lepton $+ b$ -jet

¹AAD 23N based on 36.1 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. The second error is the sum of systematic (±0.66) and that from changing parton-shower gluon recoil scheme (±0.25) uncertainties. The distribution of the invariant mass $m_{\ell\mu}$ (ℓ from W and μ from *b*-hadron decay) is used, which is less sensitive to jet energy uncertainties and top production modelling.

- ² TUMASYAN 23BB based on 36.3 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. For each event, the mass is reconstructed from a kinematic fit of the decay products to a $t\bar{t}$ hypothesis. A profile likelihood method is applied using up to four observables per event.
- ³ TUMASYAN 23Z based on 138 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. The second error is the sum of experimental (±0.61), model (±0.47), and theoretical (±0.23) uncertainties. The products of the hadronic decay of a top quark with $p_T > 400$ GeV, in the $\ell + j$ ets channel of $t\bar{t}$, are reconstructed as a single jet. The top quark mass is determined from the normalized differential cross section measurement in the m_{jet} distribution.
- ⁴ TUMASYAN 21G based on 35.9 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. Events are selected by requiring $1\ell + 2$ jets(1*b* jet) final state.
- ⁵ SIRUNYAN 20AR based on 35.9 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. The products of the hadronic decay of a top quark with $p_T > 400$ GeV, in the $\ell + j$ ets channel of $t\bar{t}$ are reconstructed as a single jet. The top quark mass is determined from the normalized differential cross section measurement in the m_{jet} distribution.
- ⁶AABOUD 19AC is an ATLAS combination of 7 and 8 TeV top-quark mass determination in the dilepton, lepton + jets, and all jets channels.
- ⁷ SIRUNYAN 19AP based on 35.9 fb⁻¹ of *pp* data at $\sqrt{s} = 13$ TeV. A kinematical fit is applied to each event assuming the signal event topology. m_t is determined simultaneously with a jet energy scale factor (JSF). The second error represents stat.+JSF. Modeling uncertainties are larger than in the measurements at $\sqrt{s} = 7$ and 8 TeV because of the use of new alternative color reconnection models.
- use of new alternative color reconnection models. ⁸ SIRUNYAN 19AR based on 35.9 fb⁻¹ of *pp* data at $\sqrt{s} = 13$ TeV. Obtained from a simultaneous fit of the cross section and the top quark mass in the POWHEG simulation. The cross section is used also to extract the MS mass and the strong coupling constant for different PDF sets.
- ⁹ KHACHATRYAN 16AK based on 19.7 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Combination of the three top mass measurements in KHACHATRYAN 16AK and with the CMS results at $\sqrt{s} = 7$ TeV.
- ¹⁰ TEVEWWG 16 is the latest Tevatron average (July 2016) provided by the Tevatron Electroweak Working Group. It takes correlated uncertainties into account and has a χ^2 of 10.8 for 11 degrees of freedom.
- ¹¹AABOUD 19AC based on 20.2 fb⁻¹ in pp collisions at $\sqrt{s} = 8$ TeV. Uses optimized event selection to suppress less-well-reconstructed events and template fits to determine m_t together with a global jet energy scale factor and a relative *b*-to-light-jet energy scale factor.
- ¹² SIRUNYAN 19AP based on 35.9 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. A combined measurement using the lepton+jets and all-jets channels through a single likelihood function. See SIRUNYAN 18DE.
- ¹³ SIRUNYAN 18DE based on 35.9 fb⁻¹ of *pp* data at $\sqrt{s} = 13$ TeV. m_t is determined simultaneously with an overall jet energy scale factor constrained by the mass of the hadronically decayed *W*. Compared to the Run 1 analysis a more advanced treatment of modeling uncertainties are employed, in particular concerning color-reconnection models. Superseded by TUMASYAN 23BB.
- ¹⁴ AABOUD 17AH based on 20.2 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Uses template fits to the ratio of the masses of three-jets (from t candidate) and dijets (from W candidate), to suppress jet energy scale uncertainty. Large QCD background is modelled using a data-driven method.
- ¹⁵ ABAZOV 17B is a combination of measurements of the top quark mass by D0 in the lepton+jets and dilepton channels, using all data collected in Run I (1992–1996) at \sqrt{s} = 1.8 TeV and Run II (2001–2011) at \sqrt{s} = 1.96 TeV of the Tevatron, corresponding to integrated luminosities of 0.1 fb⁻¹ and 9.7 fb⁻¹, respectively.

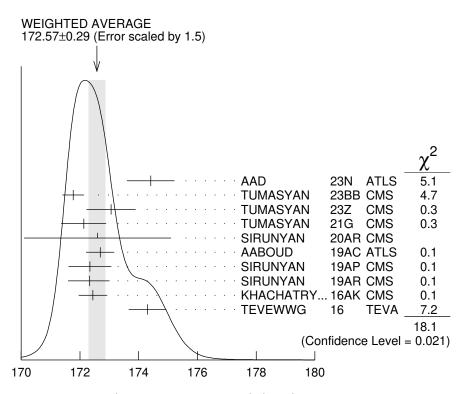
¹⁶ SIRUNYAN 17L based on 19.7 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. m_t is reconstructed from a fit to the invariant mass distribution of $\mu\nu b$, where p_T^{miss} and W mass constraint are used to reconstruct ν momentum. The number of events for various contributions, except for the *t*-channel single top one, are fixed to the values extracted from simulation. Superseded by TUMASYAN 21G.

- ¹⁷ SIRUNYAN 17N based on 19.7 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. The fully hadronic decay of a highly-boosted t is reconstructed in the ℓ +jets channel and unfolded at the particle level. The sensitivity of the peak position of the m_{jet} distribution is used to test quality of the modelling by the simulation.
- ¹⁸ SIRUNYAN 170 based on 19.7 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Analysis is based on the kinematical observables $M(b\ell)$, M_{T2} and $M(b\ell\nu)$. A fit is performed to determine m_t and an overall jet energy scale factor simultaneously.
- ¹⁹ AABOUD 16T based on 20.2 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. The analysis is refined using the p_T and invariant mass distributions of $\ell+b$ -jet system. A combination with measurements from $\sqrt{s} = 7$ TeV data in the dilepton and lepton+jets channels gives $172.84 \pm 0.34 \pm 0.61$ GeV.
- ²⁰ AABOUD 16T is an ATLAS combination of 8 TeV top-quark mass in the dilepton channel with previous measurements from $\sqrt{s} = 7$ TeV data in the dilepton and lepton + jets channels.
- ²¹ ABAZOV 16 based on 9.7 fb⁻¹ of data in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV. Employs improved fit to minimize statistical errors and improved jet energy calibration, using lepton + jets mode, which reduces error of jet energy scale. Based on previous determination in ABAZOV 12AB with increased integrated luminosity and improved fit and calibrations.
- ²² ABAZOV 16D based on 9.7 fb⁻¹ of data in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV, using the matrix element technique. Based on previous determination in ABAZOV 11R with increased integrated luminosity. There is a strong correlation with the determination in ABAZOV 16. (See ABAZOV 17B.)
- ²³ KHACHATRYAN 16AK based on 19.7 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Combination of the three top mass measurements in KHACHATRYAN 16AK and with the CMS results at $\sqrt{s} = 7$ TeV gives 172.44 \pm 0.13 \pm 0.47 GeV.
- ²⁴ The top mass and jet energy scale factor are determined by a fit.
- $^{25}\,\mathrm{Uses}$ the analytical matrix weighting technique method.
- ²⁶ KHACHATRYAN 16AL based on 19.7 fb⁻¹ in pp collisions at $\sqrt{s} = 8$ TeV. Determined from the invariant mass distribution of leptons and reconstructed secondary vertices from b decays using only charged particles. The uncertainty is dominated by modeling of b fragmentation and top p_T distribution.
- ²⁷ KHACHATRYAN 16CB based on 666 candidate reconstructed events corresponding to 19.7 fb⁻¹ of *pp* data at $\sqrt{s} = 8$ TeV. The measurement exploits correlation of m_t with $M(J/\psi \ell)$ in the same top quark decay, using a high-purity event sample. A study on modeling of *b*-quark fragmentation is given in Sec.3.3.
- ²⁸ AAD 15AW based on 4.6 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. Uses template fits to the ratio of the masses of three-jets (from t candidate) and dijets (from W candidate). Large background from multijet production is modeled with data-driven methods.
- ²⁹ AAD 15BF based on 4.6 fb⁻¹ in *pp* collisions at $\sqrt{s} = 7$ TeV. Using a three-dimensional template likelihood technique the lepton plus jets ($\geq 1b$ -tagged) channel gives 172.33 \pm 0.75 \pm 1.02 GeV, while exploiting a one dimensional template method using $m_{\ell b}$ the dilepton channel (1 or 2*b*-tags) gives 173.79 \pm 0.54 \pm 1.30 GeV. The results are combined.
- ³⁰AALTONEN 15D based on 9.1 fb⁻¹ of $p\overline{p}$ data at $\sqrt{s} = 1.96$ TeV. Uses a template technique to fit a distribution of a variable defined by a linear combination of variables sensitive and insensitive to jet energy scale to optimize reduction of systematic errors. *b*-tagged and non-*b*-tagged events are separately analyzed and combined.
- ³¹Based on 9.3 fb⁻¹ of $p\overline{p}$ data at $\sqrt{s} = 1.96$ TeV. Multivariate algorithm is used to discriminate signal from backgrounds, and templates are used to measure m_t .
- ³²Based on 9.7 fb⁻¹ of $p\overline{p}$ data at $\sqrt{s} = 1.96$ TeV. A matrix element method is used to calculate the probability of an event to be signal or background, and the overall jet energy scale is constrained *in situ* by m_W . See ABAZOV 15G for further details.
- ³³Based on 3.54 fb⁻¹ of *pp* data at $\sqrt{s} = 7$ TeV. The mass is reconstructed for each event employing a kinematic fit of the jets to a ttbar hypothesis. The combination with the pervious CMS measurements in the dilepton and the lepton+jets channels gives $173.54 \pm 0.33 \pm 0.96$ GeV.

- ³⁴ Based on 8.7 fb⁻¹ in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV. Events with an identified charged lepton or small \not{E}_T are rejected from the event sample, so that the measurement is statistically independent from those in the ℓ + jets and all hadronic channels while being sensitive to those events with a τ lepton in the final state.
- ³⁵ Based on 5.0 fb⁻¹ of *pp* data at $\sqrt{s} = 7$ TeV. CHATRCHYAN 13S studied events with di-lepton + $\not\!\!\!E_T + \geq 2$ *b*-jets, and looked for kinematical endpoints of MT2, MT2_{*T*}, and subsystem variables.
- ³⁶AAD 12I based on 1.04 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. Uses 2d-template analysis (MT) with m_t and jet energy scale factor (JSF) from m_W mass fit.
- ³⁷ Based on 8.7 fb⁻¹ of data in $p\overline{p}$ collisions at 1.96 TeV. The JES is calibrated by using the dijet mass from the W boson decay.
- 38 Use the ME method based on 2.2 fb $^{-1}$ of data in $p\overline{p}$ collisions at 1.96 TeV.
- ³⁹Combination based on up to 5.8 fb⁻¹ of data in $p\overline{p}$ collisions at 1.96 TeV.
- 40 Based on 5.8 fb $^{-1}$ of data in $p\overline{p}$ collisions at 1.96 TeV the quoted value is $m_t = 172.5 \pm 1.4(\text{stat}) \pm 1.0(\text{JES}) \pm 1.1(\text{syst})$ GeV. The measurement is performed with a liklihood fit technique which simultaneously determines m_t and JES (Jet Energy Scale).
- 41 Based on 4.3 fb⁻¹ of data in p-pbar collisions at 1.96 TeV. The measurement reduces the JES uncertainty by using the single lepton channel study of ABAZOV 11P.
- ⁴² Combination with the result in 1 fb⁻¹ of preceding data reported in ABAZOV 09AH as well as the MWT result of ABAZOV 11R with a statistical correlation of 60%.
- ⁴³Based on 5.0 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. Uses an analytical matrix weighting technique (AMWT) and full kinematic analysis (KIN).
- ⁴⁴ Based on 5.0 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. The first error is statistical and JES combined, and the second is systematic. Ideogram method is used to obtain 2D liklihood for the kinematical fit with two parameters mtop and JES.
- 45 Based on 3.2 fb⁻¹ in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV. The first error is from statistics and JES combined, and the latter is from the other systematic uncertainties. The result is obtained using an unbinned maximum likelihood method where the top quark mass and the JES are measured simultaneously, with $\Delta_{JES}=0.3\pm0.3({\rm stat})$.
- ⁴⁷ AALTONEN 11E based on 5.6 fb⁻¹ in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV. Employs a multidimensional template likelihood technique where the lepton plus jets (one or two *b*-tags) channel gives 172.2 \pm 1.2 \pm 0.9 GeV while the dilepton channel yields 170.3 \pm 2.0 \pm 3.1 GeV. The results are combined. OUR EVALUATION includes the measurement in the dilepton channel only.
- ⁴⁸ Uses a likelihood fit of the lepton p_T distribution based on 2.7 fb⁻¹ in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV.
- ⁴⁹ Based on 3.6 fb⁻¹ in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV. ABAZOV 11P reports 174.94 \pm 0.83 \pm 0.78 \pm 0.96 GeV, where the first uncertainty is from statistics, the second from JES, and the last from other systematic uncertainties. We combine the JES and systematic uncertainties. A matrix-element method is used where the JES uncertainty is constrained by the *W* mass. ABAZOV 11P describes a measurement based on 2.6 fb⁻¹ that is combined with ABAZOV 08AH, which employs an independent 1 fb⁻¹ of data.
- ⁵⁰ Based on a matrix-element method which employs 5.4 fb⁻¹ in $p\overline{p}$ collisions at \sqrt{s} = 1.96 TeV. Superseded by ABAZOV 12AB.
- ⁵¹ Based on 36 pb⁻¹ of pp collisions at $\sqrt{s} = 7$ TeV. A Kinematic Method using *b*-tagging and an analytical Matrix Weighting Technique give consistent results and are combined. Superseded by CHATRCHYAN 12BA.
- ⁵²Based on 5.6 fb⁻¹ in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV. The likelihood calculated using a matrix element method gives $m_t = 173.0 \pm 0.7(\text{stat}) \pm 0.6(\text{JES}) \pm 0.9(\text{syst})$ GeV, for a total uncertainty of 1.2 GeV.

- ⁵³ Based on 3.4 fb⁻¹ of $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV. The result is obtained by combining the MT2 variable method and the NWA (Neutrino Weighting Algorithm). The MT2 method alone gives $m_t = 168.0^{+4.8}_{-4.0}$ (stat) ± 2.9 (syst) GeV with smaller systematic error due to small JES uncertainty.
- ⁵⁴ Based on 1.9 fb⁻¹ in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV. The result is from the measurement using the transverse decay length of *b*-hadrons and that using the transverse momentum of the *W* decay muons, which are both insensitive to the JES (jet energy scale) uncertainty. OUR EVALUATION uses only the measurement exploiting the decay length significance which yields $166.9^{+9.5}_{-8.5}(\text{stat})\pm 2.9$ (syst) GeV. The measurement that uses the lepton transverse momentum is excluded from the average because of a statistical correlation with other samples.
- ⁵⁵ Based on 2.9 fb⁻¹ of $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV. The first error is from statistics and JES uncertainty, and the latter is from the other systematics. Neural-network-based kinematical selection of 6 highest E_T jets with a vtx *b*-tag is used to distinguish signal from background. Superseded by AALTONEN 12G.
- ⁵⁶ Based on 2 fb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. The top mass is obtained from the measurement of the invariant mass of the lepton (*e* or μ) from *W* decays and the soft μ in *b*-jet. The result is insensitive to jet energy scaling.
- ⁵⁷ Based on 1.9 fb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. The first error is from statistics and jet energy scale uncertainty, and the latter is from the other systematics. Matrix element method with effective propagators.
- ⁵⁸ Based on 943 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. The first error is from statistical and jet-energy-scale uncertainties, and the latter is from other systematics. AALTONEN 09K selected 6 jet events with one or more vertex *b*-tags and used the tree-level matrix element to construct template models of signal and background.
- ⁵⁹ Based on 1.9 fb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. The first error is from statistical and jet-energy-scale (JES) uncertainties, and the second is from other systematics. Events with lepton + jets and those with dilepton + jets were simultaneously fit to constrain m_t and JES. Lepton + jets data only give $m_t = 171.8 \pm 2.2$ GeV, and dilepton data only give $m_t = 171.2^{+5.3}_{-5.1}$ GeV.
- ⁶¹ Based on 2.9 fb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. Mass m_t is estimated from the likelihood for the eight-fold kinematical solutions in the plane of the azimuthal angles of the two neutrino momenta.
- neutrino momenta. ⁶² Based on 1 fb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. Events with two identified leptons, and those with one lepton plus one isolated track and a *b*-tag were used to constrain m_t . The result is a combination of the ν WT (ν Weighting Technique) result of 176.2 \pm 4.8 \pm 2.1 GeV and the MWT (Matrix-element Weighting Technique) result of 173.2 \pm 4.9 \pm 2.0 GeV.
- ⁶³ Reports measurement of $170.7^{+4.2}_{-3.9} \pm 2.6 \pm 2.4$ GeV based on 1.2 fb⁻¹ of data at \sqrt{s} = 1.96 TeV. The last error is due to the theoretical uncertainty on $\sigma_{t\bar{t}}$. Without the

cross-section constraint a top mass of $169.7^{+5.2}_{-4.9} \pm 3.1$ GeV is obtained.


⁶⁴ Template method.

 65 Result is based on 1 fb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. The first error is from statistics and jet energy scale uncertainty, and the latter is from the other systematics.

- 66 Based on 310 pb $^{-1}$ of data at $\sqrt{s}=$ 1.96 TeV.
- ⁶⁷ Ideogram method.
- ⁶⁸ Based on 311 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. Events with 4 or more jets with $E_T > 15$ GeV, significant missing E_T , and secondary vertex *b*-tag are used in the fit. About 44% of the signal acceptance is from $\tau \nu + 4$ jets. Events with identified *e* or μ are vetoed to provide a statistically independent measurement.

 69 Based on 1.02 fb $^{-1}$ of data at $\sqrt{s}=$ 1.96 TeV. Superseded by AALTONEN 12G.

- $^{70}\,\mathrm{Based}$ on 955 pb $^{-1}$ of data $\sqrt{s}=$ 1.96 TeV. m_t and JES (Jet Energy Scale) are fitted simultaneously, and the first error contains the JES contribution of 1.5 GeV.
- ⁷¹ Matrix element method. ⁷² Based on 425 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. The first error is a combination of statistics and JES (Jet Energy Scale) uncertainty, which has been measured simultaneously to give $JES = 0.989 \pm 0.029(stat)$.
- $^{73}\,\textsc{Based}$ on 370 \textsc{pb}^{-1} of data at \sqrt{s} = 1.96 TeV. Combined result of MWT (Matrixelement Weighting Technique) and uWT (u Weighting Technique) analyses is 178.1 \pm 6.7 ± 4.8 GeV.
- 74 Based on 1.0 fb $^{-1}$ of data at $\sqrt{s} =$ 1.96 TeV. ABULENCIA 07D improves the matrix element description by including the effects of initial-state radiation.
- 75 Based on 695 pb $^{-1}$ of data at \sqrt{s} = 1.96 TeV. The transverse decay length of the bhadron is used to determine m_{t} , and the result is free from the JES (jet energy scale) uncertainty.
- ⁷⁶ Based on $\sim 400 \text{ pb}^{-1}$ of data at $\sqrt{s} = 1.96$ TeV. The first error includes statistical and systematic jet energy scale uncertainties, the second error is from the other systematics. The result is obtained with the *b*-tagging information. The result without *b*-tagging is $169.2^{+5.0+1.5}_{-7.4-1.4}$ GeV. Superseded by ABAZOV 08AH.
- ⁷⁷Based on 318 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV.
- ⁷⁸ Dynamical likelihood method.
- 79 Based on 340 pb $^{-1}$ of data at $\sqrt{s}=$ 1.96 TeV.
- $^{80}\,\mathrm{Based}$ on 360 pb^{-1} of data at $\sqrt{s}=1.96$ TeV.
- ⁸¹Based on 110.2 \pm 5.8 pb⁻¹ at $\sqrt{s} = 1.8$ TeV.
- ⁸²Based on the all hadronic decays of $t \bar{t}$ pairs. Single *b*-quark tagging via the decay chain $b
 ightarrow \ c
 ightarrow \ \mu$ was used to select signal enriched multijet events. The result was obtained by the maximum likelihood method after bias correction.
- 83 Obtained by re-analysis of the lepton + jets candidate events that led to ABBOTT 98F. It is based upon the maximum likelihood method which makes use of the leading order matrix elements.
- ⁸⁴Based on 125 \pm 7 pb⁻¹ of data at $\sqrt{s} = 1.8$ TeV.
- 85 Based on \sim 106 pb $^{-1}$ of data at \sqrt{s} = 1.8 TeV.
- 86 Obtained by combining the measurements in the lepton + jets [AFFOLDER 01], all-jets [ABE 97R, ABE 99B], and dilepton [ABE 99B] decay topologies.
- ⁸⁷ Obtained by combining the D0 result m_t (GeV) = 168.4 ± 12.3 ± 3.6 from 6 di-lepton events (see also ABBOTT 98D) and m_t (GeV) = 173.3 ± 5.6 ± 5.5 from lepton+jet events (ABBOTT 98F).
- 88 Obtained by combining the CDF results of m_t (GeV)=167.4 \pm 10.3 \pm 4.8 from 8 dilepton events, m_t (GeV)=175.9 \pm 4.8 \pm 5.3 from lepton+jet events (ABE 98E), and m_t $(\text{GeV})=186.0 \pm 10.0 \pm 5.7$ from all-jet events (ABE 97R). The systematic errors in the latter two measurements are changed in this paper.
- ⁸⁹See AFFOLDER 01 for details of systematic error re-evaluation.
- ⁹⁰Based on 109 \pm 7 pb⁻¹ of data at $\sqrt{s} = 1.8$ TeV.
- ⁹¹See ABAZOV 04G.
- 92 The updated systematic error is listed. See AFFOLDER 01, appendix C.
- 93 Obtained by combining the DØ results of m_t (GeV)=168.4 \pm 12.3 \pm 3.6 from 6 dilepton events and m_t (GeV)=173.3 \pm 5.6 \pm 5.5 from 77 lepton+jet events.
- 94 Obtained by combining the DØ results from dilepton and lepton+jet events, and the CDF results (ABE 99B) from dilepton, lepton+jet events, and all-jet events.
- 95 Based on the first observation of all hadronic decays of $t\bar{t}$ pairs. Single b-quark tagging with jet-shape variable constraints was used to select signal enriched multi-jet events. The updated systematic error is listed. See AFFOLDER 01, appendix C.

t-Quark Mass (Direct Measurements) (GeV)

t-Quark Mass from Cross-Section Measurements

The top quark $\overline{\text{MS}}$ or pole mass can be extracted from a measurement of $\sigma(t\bar{t})$ by using theory calculations. We quote below the $\overline{\text{MS}}$ mass. See the review "The Top Quark" and references therein for more information.

VALUE (GeV)	ALUE (GeV) DOCUMENT ID		TECN	COMMENT
$162.5^{+2.1}_{-1.5}$ OUR AVERAGE				
$162.9\!\pm\!0.5\!\pm\!1.0^{+2.1}_{-1.2}$	¹ AAD	19 G	ATLS	$\ell + ot\!$
$160.0 \substack{+4.8 \\ -4.3}$	² ABAZOV	11S	D0	$\sigma(t\overline{t}) + { m theory}$

• • • We do not use the following data for averages, fits, limits, etc. • • •

³ ABAZOV	09AG D0	cross sects, theory $+ \exp$
⁴ ABAZOV	09R D0	cross sects, theory $+ exp$

- ¹ AAD 19G based on 20.2 fb⁻¹ of data in pp collisions at $\sqrt{s} = 8$ TeV. Normalized $t\overline{t} + 1$ -jet differential cross section as a function of $t\overline{t}j$ invariant mass is measured in the ℓ + jets mode. The unfolded parton-level distribution is compared with the NLO QCD prediction. The three errors are from statitics, systematics, and theory.
- ²Based on 5.3 fb⁻¹ in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV. ABAZOV 11S uses the measured $t\overline{t}$ production cross section of $8.13^{+1.02}_{-0.90}$ pb [ABAZOV 11E] in the lepton plus jets channel to obtain the top quark $\overline{\text{MS}}$ mass by using an approximate NNLO computation (MOCH 08, LANGENFELD 09). The corresponding top quark pole mass is $167.5^{+5.4}_{-4.9}$ GeV. A different theory calculation (AHRENS 10, AHRENS 10A) is also used and yields $m_{\overline{t}}^{\overline{\text{MS}}} = 154.5^{+5.0}_{-4.3}$ GeV.

³Based on 1 fb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. Uses the ℓ + jets, $\ell\ell$, and $\ell\tau$ + jets channels. ABAZOV 09AG extract the pole mass of the top quark using two different

calculations that yield $169.1^{+5.9}_{-5.2}$ GeV (MOCH 08, LANGENFELD 09) and $168.2^{+5.9}_{-5.4}$ GeV (KIDONAKIS 08).

⁴Based on 1 fb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. Uses the $\ell\ell$ and $\ell\tau$ + jets channels. ABAZOV 09R extract the pole mass of the top quark using two different calculations that yield 173.3^{+9.8}_{-8.6} GeV (MOCH 08, LANGENFELD 09) and 171.5^{+9.9}_{-8.8} GeV (CAC-CIARI 08).

t-Quark Pole Mass from Cross-Section Measurements					
VALUE (GeV)	DOCUMENT ID	TECN	COMMENT		
172.4 \pm 0.7 OUR AVERAG	jΕ				
$173.4 \ \begin{array}{c} +1.8 \\ -2.0 \end{array}$	¹ AAD	23AY LHC	$e^{\pm}\mu^{\mp}$ pair; ATLAS+CMS combined		
172.93 ± 1.36	² TUMASYAN	23R CMS	$t\overline{t}+$ jet; $\ell^{\pm}\ell^{\mp}$ mode		
$173.1 \ \begin{array}{c} +2.0 \\ -2.1 \end{array}$	³ AAD	20Q ATLS	$e+\mu+1$ or 2 <i>b</i> -jets		
171.1 $\pm 0.4 \pm 0.9^{+0.7}_{-0.3}$	⁴ AAD	19G ATLS	$\ell {+} ot\!$		
170.6 ± 2.7	⁵ SIRUNYAN	17W CMS	$\ell + \geq 1 { m j}$		
172.8 $\pm 1.1 \ +3.3 \ -3.1$	⁶ ABAZOV	16F D0	$\ell\ell$, ℓ +jets channels		
$173.7 \ \begin{array}{c} +2.3 \\ -2.1 \end{array}$	⁷ AAD	15BWATLS	$\ell {+} ot\!$		
• • • We do not use the fol	lowing data for ave	rages, fits, lim	its, etc. ● ● ●		
170.5 ± 0.8	⁸ SIRUNYAN	20BV CMS	<i>t t</i> normalized multi- differential cross sections		
$173.2\ \pm 0.9\ \pm 0.8 {\pm 1.2}$	⁹ AABOUD	17вс ATLS	$e + \mu + \geq 1b$ jets		
173.8 $^{+1.7}_{-1.8}$	¹⁰ KHACHATRY	16AW CMS	$\mathbf{e} + \mathbf{\mu} + \mathbf{E}_T + \mathbf{E}_T$		
$172.9 \ \begin{array}{c} +2.5 \\ -2.6 \end{array}$	¹¹ AAD	14AY ATLS	pp at $\sqrt{s}=$ 7, 8 TeV		
$176.7 \ \begin{array}{c} +3.0 \\ -2.8 \end{array}$	¹² CHATRCHYA	N14 CMS	pp at $\sqrt{s}=$ 7 TeV		

¹AAD 23AY based on 5 fb⁻¹ and 20 fb⁻¹ of *pp* data at $\sqrt{s} = 7$ TeV and 8 TeV, respectively. The result is obtained from the combined inclusive cross section measurements and the NNLO+NNLL predictions fixing $\alpha_s(m_Z) = 0.118$.

- ² TUMASYAN 23R based on 36.3 fb⁻¹ of data in *pp* collisions at $\sqrt{s} = 13$ TeV. Normalized $t\overline{t} + 1$ -jet differential cross section as a function of $t\overline{t}j$ invariant mass is measured in the dilepton mode. The unfolded parton-level distribution is compared with the NLO QCD prediction. The result depends on the PDF and ABMP16NLO is used.
- QCD prediction. The result depends on the PDF and ABMP16NLO is used. ³AAD 20Q based on 36.1 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. The result is obtained from the inclusive cross section measurement and the NNLO+NNLL prediction.
- ⁴ AAD 19G based on 20.2 fb⁻¹ of data in pp collisions at $\sqrt{s} = 8$ TeV. Normalized $t\overline{t} + 1$ -jet differential cross section as a function of $t\overline{t}j$ invariant mass is measured in the ℓ + jets mode. The unfolded parton-level distribution is compared with the NLO QCD prediction. The three errors are from statitics, systematics, and theory.
- ⁵ SIRUNYAN 17W based on 2.2 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. Events are categorized according to the jet multiplicity and the number of *b*-tagged jets. The pole mass is obtained from the inclusive cross section measurement and the NNLO prediction.
- ⁶ ABAZOV 16F based on 9.7 fb⁻¹ of data in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV. The result is obtained from the inclusive cross section measurement and the NNLO+NNLL prediction. ⁷ AAD 15BW based on 4.6 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. Uses normalized differential
- ⁷ AAD 15BW based on 4.6 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. Uses normalized differential cross section for $t\overline{t} + 1$ jet as a function of the inverse of the invariant mass of the $t\overline{t} + 1$ jet system. The measured cross section is corrected to the parton level. Then a fit to the data using NLO + parton shower prediction is performed.

- ⁸ SIRUNYAN 20BV based on 35.9 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. The error accounts for both experimental and theoretical uncertainties. Events containing two oppositely charged leptons are used. The pole mass is particularly sensitive to the $t\bar{t}$ invariant mass distribution close to the threshold. However, the Coulomb and soft gluon resummation effects are not taken into account, hence, an additional theoretical uncertainty of order +1 GeV is assumed.
- ⁹AABOUD 17BC based on 20.2 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. The pole mass is extracted from a fit of NLO predictions to eight single lepton and dilepton differential distributions, while simultaneously constraining uncertainties due to PDFs and QCD scales. The three reported uncertainties come from statistics, experimental systematics, and theoretical sources.
- ¹⁰ KHACHATRYAN 16AW based on 5.0 fb⁻¹ of *pp* collisions at 7 TeV and 19.7 fb⁻¹ at 8 TeV. The 7 TeV data include those used in CHATRCHYAN 14. The result is obtained from the inclusive cross sections.
- ¹¹ AAD 14AY used $\sigma(t\bar{t})$ for $e\mu$ events. The result is a combination of the measurements $m_t = 171.4 \pm 2.6$ GeV based on 4.6 fb⁻¹ of data at 7 TeV and $m_t = 174.1 \pm 2.6$ GeV based on 20.3 fb⁻¹ of data at 8 TeV.
- based on 20.3 fb⁻¹ of data at 8 TeV. ¹² CHATRCHYAN 14 used $\sigma(t\bar{t})$ from pp collisions at $\sqrt{s} = 7$ TeV measured in CHA-TRCHYAN 12AX to obtain m_t (pole) for $\alpha_s(m_Z) = 0.1184 \pm 0.0007$. The errors have been corrected in KHACHATRYAN 14K.

 $m_t - m_{\overline{t}}$

Test of *CPT* conservation. OUR AVERAGE assumes that the systematic uncertainties are uncorrelated.

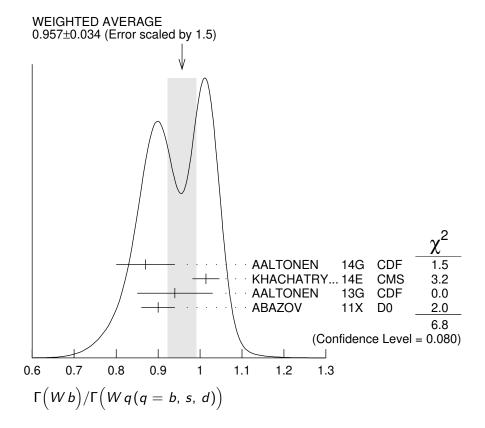
VALUE (GeV)	DOCUMENT ID	TECN	I COMMENT
-0.15 ± 0.20 OUR AVERAG	E Error includes	scale facto	r of 1.1.
$0.83 \substack{+1.79 \\ -1.35}$	¹ TUMASYAN	21G CMS	<i>t</i> -channel single top produc- tion
$-0.15\!\pm\!0.19\!\pm\!0.09$	² CHATRCHYAN		5 $\ell + \not \! E_T + \ge 4 j \ (\ge 1 b \ j)$
$0.67\!\pm\!0.61\!\pm\!0.41$	³ AAD		
$-1.95\!\pm\!1.11\!\pm\!0.59$	⁴ AALTONEN		
$-0.44 \pm 0.46 \pm 0.27$	⁵ CHATRCHYAN		, , , , , , , , , , , , , , , , , , , ,
$0.8\ \pm 1.8\ \pm 0.5$	⁶ ABAZOV	11⊤ D0	$\ell + ot\!$
• • • We do not use the fol	lowing data for av	verages, fits	, limits, etc. ● ● ●
$-3.3 \pm 1.4 \pm 1.0$	⁷ AALTONEN	11K CDF	Repl. by AALTONEN 13E
$3.8 \pm 3.4 \pm 1.2$			$\ell + ot\!$
by requiring $1\ell+2$ jets(1			$\sqrt{s}=13$ TeV. Events are selected top mass of $172.13 \substack{+0.76 \\ -0.77}$ GeV/c ²
mass of 172.84 \pm 0.10 (s	stat) GeV is obtaiı	ned.	t $\sqrt{s}=$ 8 TeV and an average top
			average top mass of 172.5 GeV/c^2 .
⁴ Based on 8.7 fb ⁻¹ of $p_{\overline{p}}$ GeV/c ² .	\overline{o} collisions at \sqrt{s} =	= 1.96 TeV	and an average top mass of 172.5
events using the Ideogra	m method.		ed on the fitted m_t for ℓ^+ and ℓ^-
⁶ Based on a matrix-element method which employs 3.6 fb ⁻¹ in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV.			
⁷ Based on a template likelihood technique which employs 5.6 fb ⁻¹ in $p\overline{p}$ collisions at \sqrt{s} = 1.96 TeV.			
8 Based on 1 fb $^{-1}$ of data	a in <i>pp</i> collisions a	at $\sqrt{s}=1.9$	96 TeV.

t-quark DECAY WIDTH

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
$1.42^{m+0.19}_{m-0.15}$ OU	R AVERA	GE Error includes	scale factor o	of 1.4.
$1.76 \pm 0.33 \substack{+0.7\\-0.6}$	79 68	¹ AABOUD	18AZ ATLS	$\ell {+} ot\!$
$1.36 \pm 0.02 \substack{+0.2\\-0.2}$	14 11	² KHACHATRY	14E CMS	$\ell\ell + E_T$ +2-4jets (0-2 <i>b</i> -tag)
$2.00 \substack{+0.47 \\ -0.43}$		³ ABAZOV	12⊤ D0	$\Gamma(t \rightarrow bW)/B(t \rightarrow bW)$
• • • We do not u	se the foll	owing data for ave	rages, fits, lim	its, etc. ● ● ●
< 6.38	95	⁴ AALTONEN	13z CDF	$\ell {+} ot\!$
$1.99 \substack{+\ 0.69 \\ -\ 0.55}$		⁵ ABAZOV	11B D0	Repl. by ABAZOV 12⊤
> 1.21	95	⁵ ABAZOV	11B D0	$\Gamma(t \rightarrow Wb)$
< 7.6	95	⁶ AALTONEN	10AC CDF	ℓ + jets, direct
<13.1	95	⁷ AALTONEN	09м CDF	$m_t(rec)$ distribution

¹ Based on 20.2 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Γ_t is measured using a template fit to the reconstructed invariant mass of the *b*-jet of the semileptonically decaying top quark and the corresponding lepton, and the angular distance between j_b and j_l in hadronic top decay. Signal templates are generated by reweighting events at parton-level to Breit-Wigner distribution with different Γ_t hypotheses for $m_t = 172.5$ GeV. The result is consistent with the NNLO SM prediction of 1.322 GeV.

- ² Based on 19.7 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. The result is obtained by combining the measurement of $R = \Gamma(t \rightarrow Wb)/\Gamma(t \rightarrow Wq \ (q=b,s,d))$ and a previous CMS measurement of the *t*-channel single top production cross section of CHATRCHYAN 12BQ, by using the theoretical calculation of $\Gamma(t \rightarrow Wb)$ for $m_t = 172.5$ GeV.
- ³ Based on 5.4 fb⁻¹ of data in $p\overline{p}$ collisions at 1.96 TeV. $\Gamma(t \rightarrow bW) = 1.87^{+0.44}_{-0.40}$ GeV is obtained from the observed *t*-channel single top quark production cross section, whereas B($t \rightarrow bW$) = 0.90 ± 0.04 is used assuming $\sum_{q} B(t \rightarrow qW) = 1$. The result is valid for $m_t = 172.5$ GeV. See the paper for the values for $m_t = 170$ or 175 GeV.
- 4 Based on 8.7 fb $^{-1}$ of data. The two sided 68% CL interval is 1.10 GeV $<\Gamma_t$ < 4.05 GeV for m_t = 172.5 GeV.
- ⁵ Based on 2.3 fb⁻¹ in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV. ABAZOV 11B extracted Γ_t from the partial width $\Gamma(t \rightarrow Wb) = 1.92^{+0.58}_{-0.51}$ GeV measured using the *t*-channel single top production cross section, and the branching fraction br $t \rightarrow Wb = 0.962^{+0.068}_{-0.066}(\text{stat})^{+0.064}_{-0.052}(\text{syst})$. The $\Gamma(t \rightarrow Wb)$ measurement gives the 95% CL lowerbound of $\Gamma(t \rightarrow Wb)$ and hence that of Γ_t .
- 6 Results are based on 4.3 fb $^{-1}$ of data in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV. The top quark mass and the hadronically decaying W boson mass are reconstructed for each candidate events and compared with templates of different top quark width. The two sided 68% CL interval is 0.3 GeV< $\Gamma_t <$ 4.4 GeV for $m_t =$ 172.5 GeV.


t DECAY MODES

	Mode		Fraction (Г	;/Γ)	Confidence le	vel
Г ₁ Г ₂	Wq(q = b, s, d) Wb					
Γ ₂	$e\nu_e b$		(11.10±	0.30) %		
Γ ₄	$\mu \nu_{\mu} b$		$(11.40\pm)$,		
Γ ₅	$\tau \nu_{\tau} \mathbf{b}$		(10.7 ±			
Γ ₆	$q \overline{q} b$		(66.5 ± 1)	,		
-	$\gamma q(q=u,c)$		[<i>a</i>] < 4.5	,	-5 9	5%
Г ₈	$H^+ b$, $H^+ \rightarrow \tau \nu_{\tau}$					
	$\Delta T = 1$ wea	k neutral (current (T1)	modes		
Γg	Zq(q=u,c)	T1	[b] < 1.2	imes 10 ⁻	-4 95	5%
Γ ₁₀	Hu	Τ1	< 1.9	\times 10 ⁻	-4 95	5%
Γ_{11}^{-1}	Нc	T1	< 4.3	imes 10 ⁻	-4 95	5%
Γ_{12}	$\ell^+ \overline{q} \overline{q}' (q=d,s,b; q'=u,c)$	с) T1	< 1.6	imes 10 ⁻	-3 95	5%
	Lepton Family	y number ((<i>LF</i>) violating	; modes		
Γ_{13}	$e^{\pm}\mu^{\mp}c$	LF	< 8.9	× 10 ⁻	-7	
Γ ₁₄	$e^{\pm}\mu^{\mp}u$	LF	< 7	imes 10 ⁻	-8	
-] This limit is for $\Gamma(t ightarrow$] This limit is for $\Gamma(t ightarrow$,, .	,			
[]	1 This million is for $1 (t \rightarrow$	2 9)/1 (1 -	- VV Dj.			
	t B	RANCHIN	G RATIOS			
•	$(b)/\Gamma(Wq(q=b, s, d))$ OUR AVERAGE assumes tha	5			Γ ₂ /	Г ₁
<u>VALUE</u> 0.957			<u>TECN</u> <u>C</u> scale factor of 1		ideogram belo	<u>.</u>
	± 0.07 ¹ AA	LTONEN	14G CDF <i>l</i>	$\ell + \not\!$	2j (0,1,2 <i>b</i> -tag	g)
	2	ACHATRY.	14E CMS ℓ	$\ell + \vec{E_T} + 2$,3,4j (0–2 <i>b</i> -tag	g)
				$+\not\!\!\!E_T + \ge 3$	Bjets ($\geq 1b$ -tag	g)
0.90	±0.04 ⁴ AB	AZOV	11X D0			

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

$0.97 \begin{array}{c} +0.09 \\ -0.08 \end{array}$	⁵ ABAZOV	08M D0	ℓ + n jets with 0,1,2 <i>b</i> -tag
$1.03 \ {+0.19 \atop -0.17}$	⁶ ABAZOV	06K D0	
$1.12 \begin{array}{r} +0.21 \\ -0.19 \end{array} \begin{array}{r} +0.17 \\ -0.13 \end{array}$	⁷ ACOSTA	05A CDF	Repl. by AALTONEN 13G
$0.94 \begin{array}{c} +0.26 \\ -0.21 \end{array} \begin{array}{c} +0.17 \\ -0.12 \end{array}$	⁸ AFFOLDER	01c CDF	

- 1 Based on 8.7 fb $^{-1}$ of data. This measurement gives $|V_{tb}|=0.93\pm0.04$ and $|V_{tb}|>0.85~(95\%$ CL) in the SM.
- ² Based on 19.7 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. The result is obtained by counting the number of b jets per $t\overline{t}$ signal events in the dilepton channel. The $t\overline{t}$ production cross section is measured to be $\sigma(t\overline{t}) = 238 \pm 1 \pm 15$ pb, in good agreement with the SM prediction and the latest CMS measurement of CHATRCHYAN 14F. The measurement gives R > 0.995 (95% CL), or $|V_{tb}| > 0.975$ (95% CL) in the SM, requiring $R \leq 1$.
- ³Based on 8.7 fb⁻¹ of $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV. Measure the fraction of $t \rightarrow Wb$ decays simultaneously with the $t\overline{t}$ cross section. The correlation coefficient between those two measurements is -0.434. Assume unitarity of the 3×3 CKM matrix and set $|V_{tb}| > 0.89$ at 95% CL.
- ⁴ Based on 5.4 fb⁻¹ of data. The error is statistical and systematic combined. The result is a combination of 0.95 \pm 0.07 from ℓ + jets channel and 0.86 \pm 0.05 from $\ell\ell$ channel. $|V^{tb}| = 0.95 \pm 0.02$ follows from the result by assuming unitarity of the 3x3 CKM matrix.
- 5 Result is based on 0.9 fb $^{-1}$ of data. The 95% CL lower bound R > 0.79 gives $|V_{tb}| >$ 0.89 (95% CL).
- ⁶ABAZOV 06K result is from the analysis of $t\overline{t} \rightarrow \ell\nu + \geq 3$ jets with 230 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. It gives R > 0.61 and $|V_{tb}| > 0.78$ at 95% CL. Superseded by _ABAZOV 08M.
- ⁷ ACOSTA 05A result is from the analysis of lepton + jets and di-lepton + jets final states of $t\bar{t}$ candidate events with ~ 162 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. The first error is statistical and the second systematic. It gives R > 0.61, or $|V_{tb}| > 0.78$ at 95% CL.
- ⁸ AFFOLDER 01C measures the top-quark decay width ratio $R = \Gamma(W b)/\Gamma(W q)$, where q is a d, s, or b quark, by using the number of events with multiple b tags. The first error is statistical and the second systematic. A numerical integration of the likelihood function gives R > 0.61 (0.56) at 90% (95%) CL. By assuming three generation unitarity, $|V_{tb}| = 0.97^{+0.16}_{-0.12}$ or $|V_{tb}| > 0.78 (0.75)$ at 90% (95%) CL is obtained. The result is based on 109 pb⁻¹ of data at $\sqrt{s} = 1.8$ TeV.

$\Gamma(e\nu_e b)/\Gamma_{total}$			Г ₃ /Г
VALUE	DOCUMENT ID	TECN	COMMENT
0.111 ± 0.003	¹ AAD	15cc ATLS	$\ell+$ jets, $\ell\ell+$ jets, $\ell au_{m h}+$ jets

¹ AAD 15CC based on 4.6 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. The original value is given by 13.3 \pm 0.4 \pm 0.5%, which includes electrons from the decay of τ leptons. It is assumed that the top branching ratios to leptons and jets add up to one and that only SM processes contribute to the background. The event selection criteria are optimized for the $\ell \tau_h$ + jets channel. We have converted the original value to eliminate contributions of electrons from τ 's, by using the AAD 15CC measurements of the branching ratios to μ and τ channels, as well as the PDG values of τ branching ratios into e and μ channels.

$\Gamma(\mu u_{\mu} b) / \Gamma_{ ext{total}}$			Γ ₄ /Γ
VALUE	DOCUMENT ID	TECN	COMMENT
0.114±0.002	¹ AAD	15cc ATLS	$\ell+$ jets, $\ell\ell+$ jets, $\ell au_{m h}+$ jets

¹ AAD 15CC based on 4.6 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. The original value is given by 13.4 ± 0.3 ± 0.5%, which includes muons from the decay of τ leptons. It is assumed that the top branching ratios to leptons and jets add up to one and that only SM processes contribute to the background. The event selection criteria are optimized for the $\ell \tau_h$ + jets channel. We have converted the original value to eliminate contributions of muons from τ 's, by using the AAD 15CC measurements of the branching ratios to μ and τ channels, as well as the PDG values of τ branching ratios into e and τ channels.

$\Gamma(au u_{ au} b) / \Gamma_{ ext{total}}$			Г ₅ /Г
VALUE	DOCUMENT ID	TECN	COMMENT
0.107 ± 0.005 OUR AVERAG			
$0.1050 \pm 0.0009 \pm 0.0071$	¹ SIRUNYAN	20V CMS	$\ell au_{m{h}} + \geq$ 3 jets (\geq 1 <i>b</i> -tag)
0.112 ± 0.009	² AAD	15cc ATLS	ℓ +jets, $\ell\ell$ +jets, $\ell\tau_{\boldsymbol{b}}$ +jets
0.096 ± 0.028	³ AALTONEN	14A CDF	$\ell + au_{m{h}} + \ge 2$ jets ($\ge 1b$ -tag)
\bullet \bullet We do not use the follow			

⁴ ABULENCIA	06 R	CDF	$\ell au + jets$
⁵ ABE	97 ∨	CDF	$\ell au + jets$

- ¹ SIRUNYAN 20V based on 35.9 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. $t\bar{t}$ events are selected in the $t\bar{t} \rightarrow (\ell \nu_{\ell})(\tau_h \nu_{\tau}) b\bar{b}$ mode, where τ_h refers to the hadronic decays of τ . The branching ratio is determined with respect to the $t\bar{t}$ inclusive cross section extrapolated from the light dilepton mode. The ratio of the $t\bar{t}$ production cross sections in the $\ell \tau_h$ and $\ell\ell$ channels yields 0.973 \pm 0.009 \pm 0.066, consistent with lepton universality.
- ² AAD 15CC based on 4.6 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. The original value is given by 7.0 ± 0.3 ± 0.5%, which includes only the hadronic decay of τ leptons. It is assumed that the top branching ratios to leptons and jets add up to one and that only SM processes contribute to the background. The event selection criteria are optimized for the $\ell \tau_h +$ jets channel. We have converted the original value to include leptonic decays of τ 's, by using the AAD 15CC measurements of the branching ratios to *e* and μ channels, as well as the PDG values of τ branching ratios into *e* and μ channels.
- ³Based on 9 fb⁻¹ of data. The measurement is in the channel $t\bar{t} \rightarrow (b\ell\nu)(b\tau\nu)$, where τ decays into hadrons (τ_h) , and ℓ (e or μ) include ℓ from τ decays (τ_ℓ) . The result is consistent with lepton universality.
- ⁴ ABULENCIA 06R looked for $t\bar{t} \rightarrow (\ell \nu_{\ell}) (\tau \nu_{\tau}) b\bar{b}$ events in 194 pb⁻¹ of $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV. 2 events are found where 1.00 ± 0.17 signal and 1.29 ± 0.25 background events are expected, giving a 95% CL upper bound for the partial width ratio $\Gamma(t \rightarrow \tau \nu q) / \Gamma_{SM}(t \rightarrow \tau \nu q) < 5.2$.
- ⁵ ABE 97V searched for $t\overline{t} \rightarrow (\ell \nu_{\ell}) (\tau \nu_{\tau}) b\overline{b}$ events in 109 pb⁻¹ of $p\overline{p}$ collisions at $\sqrt{s} = 1.8$ TeV. They observed 4 candidate events where one expects ~ 1 signal and ~ 2 background events. Three of the four observed events have jets identified as *b* candidates.

Γ(q q b)/Γ _{total}			Г ₆ /Г
VALUE	DOCUMENT ID	TECN	COMMENT
$0.665 \pm 0.004 \pm 0.013$	¹ AAD	15cc ATLS	$\ell+$ jets, $\ell\ell+$ jets, $\ell au_{h}+$ jets

¹ AAD 15CC based on 4.6 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. Branching ratio of top quark into b and jets. It is assumed that the top branching ratios to leptons and jets add up to one and that only SM processes contribute to the background. The event selection criteria are optimized for the $\ell \tau_h$ + jets channel.

Γ(γq(q=u,c))/Г	total				Г ₇ /Г
VALUE		<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<0.85	× 10 ⁻⁵	95	¹ AAD	23	ATLS	$B(t \rightarrow \gamma u)$, left-handed $t u \gamma$ coupling
<4.2	× 10 ^{—5}	95	¹ AAD	23	ATLS	$B(t \rightarrow \gamma c)$, left-handed $t c \gamma$ coupling
<1.2	× 10 ⁻⁵	95	¹ AAD	23	ATLS	$B(t \rightarrow \gamma u)$, right-handed $t u \gamma$ coupling
<4.5	× 10 ^{—5}	95	¹ AAD	23	ATLS	$B(t \rightarrow \gamma c)$, right-handed $t c \gamma$ coupling
<1.3	imes 10 ⁻⁴	95	² KHACHATRY	16AS	S CMS	$B(t \rightarrow \gamma u)$
<1.7	imes 10 ⁻³	95	² KHACHATRY	16 AS	5 CMS	$B(t \rightarrow \gamma c)$
<5.9	imes 10 ⁻³	95	³ CHEKANOV	03	ZEUS	$B(t \rightarrow \gamma u)$
• • • W	Ve do not use	e the follow	wing data for avera	ages, fi	ts, limits	s, etc. ● ● ●
<2.8	imes 10 ⁻⁵	95	⁴ AAD	20 B	ATLS	$B(t o \gamma u)$, left-handed $t u \gamma$ coupling, Repl. by AAD 23
<6.1	$\times 10^{-5}$	95	⁴ AAD	2 0 B	ATLS	$B(t \rightarrow \gamma u)$, right-handed $t u \gamma$ coupling, Repl. by AAD 23
<2.2	$\times 10^{-4}$	95	⁴ AAD	20B	ATLS	$B(t \rightarrow \gamma c)$, left-handed $t c \gamma$ coupling, Repl. by AAD 23
<1.8	$\times 10^{-4}$	95	⁴ AAD	20 B	ATLS	$B(t \rightarrow \gamma c)$, right-handed $t c \gamma$ coupling, Repl. by AAD 23
< 0.006	4	95	⁵ AARON	09A	H1	$t \rightarrow \gamma u$
< 0.046	5	95	⁶ ABDALLAH	04C	DLPH	$B(\gamma c \text{ or } \gamma u)$
< 0.0132	2	95	⁷ AKTAS	04	H1	$B(t ightarrow \gamma u)$
<0.041		95	⁸ ACHARD	02J	L3	$B(t \rightarrow \gamma c \text{ or } \gamma u)$
< 0.032		95	⁹ ABE	98 G	CDF	$t \overline{t} \rightarrow (W b) (\gamma c \text{ or } \gamma u)$

¹ AAD 23 based on 139 fb⁻¹ of data in *pp* collisions at $\sqrt{s} = 13$ TeV. Anomalous FCNC left-handed and right-handed couplings are searched for through the single top production in association with a photon and in the decay of a top quark in the $t\bar{t}$ production. The SM predictions of the corresponding branching ratios are of the order of 10^{-14} .

SM predictions of the corresponding branching ratios are of the order of 10^{-14} . ²KHACHATRYAN 16AS based on 19.8 fb⁻¹ of data in *pp* collisions at $\sqrt{s} = 8$ TeV. FCNC through single top production in association with a photon is searched for in the mode $\mu + \gamma + \not{\!}_T + \geq 1j$ (0,1*b*). Bounds on the anomalous FCNC couplings are given by $\kappa_{t u \gamma} < 0.025$ and $\kappa_{t c \gamma} < 0.091$.

³ CHEKANOV 03 looked for single top production via FCNC in the reaction $e^{\pm} p \rightarrow e^{\pm}$ (*t* or \overline{t}) X in 130.1 pb⁻¹ of data at \sqrt{s} =300–318 GeV. No evidence for top production and its decay into *bW* was found. The result is obtained for m_t =175 GeV when B(γc)=B(Zq)=0, where *q* is a *u* or *c* quark. Bounds on the effective *t*-*u*- γ and *t*-*u*-*Z* couplings are found in their Fig. 4. The conversion to the constraint listed is from private communication, E. Gallo, January 2004.

communication, E. Gallo, January 2004. ⁴ AAD 20B based on 81 fb⁻¹ of data in *pp* collisions at $\sqrt{s} = 13$ TeV. FCNC through single top production in association with a photon is searched for in the mode $\ell \gamma + E_T$

https://pdg.lbl.gov

. . .

+ 1*j* (*b*-tag). Anomalous FCNC left-handed and right-handed couplings are searched for, which result in different kinematical properties of top decay such as the lepton distribution. Limits are set on the $tq\gamma$ couplings in an effective field theory.

- ⁵ AARON 09A looked for single top production via FCNC in $e^{\pm} p$ collisions at HERA with 474 pb⁻¹. The upper bound of the cross section gives the bound on the FCNC coupling $\kappa_{t\mu\gamma}/\Lambda < 1.03 \text{ TeV}^{-1}$, which corresponds to the result for $m_t = 175 \text{ GeV}$.
- ⁶ ABDALLAH 04C looked for single top production via FCNC in the reaction $e^+e^- \rightarrow \overline{t}c$ or $\overline{t}u$ in 541 pb⁻¹ of data at \sqrt{s} =189–208 GeV. No deviation from the SM is found, which leads to the bound on B($t \rightarrow \gamma q$), where q is a u or a c quark, for $m_t = 175$ GeV when B($t \rightarrow Zq$)=0 is assumed. The conversion to the listed bound is from private communication, O. Yushchenko, April 2005. The bounds on the effective t-q- γ and t-q-Z couplings are given in their Fig. 7 and Table 4, for $m_t = 170$ -180 GeV, where most conservative bounds are found by choosing the chiral couplings to maximize the negative interference between the virtual γ and Z exchange amplitudes.
- ⁷ AKTAS 04 looked for single top production via FCNC in e^{\pm} collisions at HERA with 118.3 pb⁻¹, and found 5 events in the *e* or μ channels. By assuming that they are due to statistical fluctuation, the upper bound on the $t u \gamma$ coupling $\kappa_{t u \gamma} < 0.27$ (95% CL) is obtained. The conversion to the partial width limit, when $B(\gamma c) = B(Z u) = B(Z c) = 0$, is from private communication, E. Perez, May 2005.
- ⁸ ACHARD 02J looked for single top production via FCNC in the reaction $e^+e^- \rightarrow \bar{t}c$ or $\bar{t}u$ in 634 pb⁻¹ of data at \sqrt{s} = 189–209 GeV. No deviation from the SM is found, which leads to a bound on the top-quark decay branching fraction B(γq), where q is a u or c quark. The bound assumes B(Zq)=0 and is for m_t = 175 GeV; bounds for m_t =170 GeV and 180 GeV and B(Zq) \neq 0 are given in Fig. 5 and Table 7.
- ⁹ABE 98G looked for $t\bar{t}$ events where one t decays into $q\gamma$ while the other decays into bW. The quoted bound is for $\Gamma(\gamma q)/\Gamma(W b)$.

$\Gamma(H^+ b, H^+ \rightarrow \tau \nu_{\tau})$)/Г _{total}		
VALUE (%)	CL%	DOCUMENT ID	TECN
<0.25	95	¹ AABOUD	18BWATLS

¹AABOUD 18BW based on 36.1 fb⁻¹ of *pp* data at $\sqrt{s} = 13$ TeV. In the mass range of $m_{H^+} = 90-160$ GeV, assuming the SM cross section for the $t \bar{t}$ production, the upper limit for the branching fraction B($t \rightarrow bH^+$) × B($H^+ \rightarrow \tau \nu_{\tau}$) ranges between 0.25% and 0.031%.

$\Gamma(Zq(q=u,c))/\Gamma_{total}$

Γ9/Γ

 Γ_8/Γ

Test for $\Delta T=1$ weak neutral current. Allowed by higher-order electroweak interaction.

VALUE (units 10^{-3})	CL%	DOCUMENT ID	TECN	COMMENT
< 0.062	95	¹ AAD	23AS ATLS	$B(t \rightarrow Zu)$, left-handed tuZ coupling
< 0.13	95	¹ AAD	23AS ATLS	$B(t \rightarrow Zc)$, left-handed tcZ coupling
< 0.066	95	¹ AAD	23AS ATLS	$B(t \rightarrow Zu)$, right-handed t u Z coupling
< 0.12	95	¹ AAD	23AS ATLS	
< 0.22	95	² SIRUNYAN	17E CMS	$t \rightarrow Z u$
< 0.49	95	² SIRUNYAN	17E CMS	$t \rightarrow Z c$
< 0.7	95	³ AAD	16D ATLS	$t ightarrow Z q \; (q = u, c)$
\bullet \bullet \bullet We do not	use the fo	llowing data for a	verages, fits, l	imits, etc. • • •
< 0.17 < 0.24	95 95	⁴ AABOUD ⁴ AABOUD	18AT ATLS 18AT ATLS	- /

< 0.6	95	⁵ CHATRCHYAN 14s CMS $t \rightarrow Z q (q = u, c)$
< 0.5	95	⁶ CHATRCHYAN 14s CMS $t \rightarrow Z q (q = u, c)$
< 2.1	95	7 CHATRCHYAN 13F CMS $t ightarrow Z q \; (q = u, c)$
< 7.3	95	⁸ AAD 12BT ATLS $t \overline{t} \rightarrow \ell^+ \ell^- \ell'^{\pm} + E_T + \text{jets}$
<32	95	⁹ ABAZOV 11M D0 $t \rightarrow Zq (q = u, c)$
<83	95	10 AALTONEN 09AL CDF $t ightarrow Zq(q{=}c)$
<37	95	¹¹ AALTONEN 08AD CDF $t ightarrow Z q \; (q = u, c)$
< 1.59 $ imes$ 10 ²	95	¹² ABDALLAH 04C DLPH $e^+e^- ightarrow \overline{t}c$ or $\overline{t}u$
$<$ 1.37 $ imes 10^2$	95	¹³ ACHARD 02J L3 $e^+e^- ightarrow \overline{t}c$ or $\overline{t}u$
$<$ 1.4 $\times 10^2$	95	¹⁴ HEISTER 02Q ALEP $e^+e^- \rightarrow \overline{t}c$ or $\overline{t}u$
$<$ 1.37 $ imes 10^2$	95	¹⁵ ABBIENDI 01T OPAL $e^+e^- ightarrow \overline{t}c$ or $\overline{t}u$
$<$ 1.7 $\times 10^2$	95	¹⁶ BARATE 00S ALEP $e^+e^- \rightarrow \overline{t}c$ or $\overline{t}u$
$< 3.3 \times 10^2$	95	17 ABE 98G CDF $t \overline{t} \rightarrow (W b) (Z c \text{ or } Z u)$

- ¹AAD 23AS based on 139 fb⁻¹ of data in pp collisions at $\sqrt{s} = 13$ TeV. Anomalous FCNC left-handed and right-handed couplings are searched for through the single top production in association with a Z boson and in the decay of a top quark in the $t \bar{t}$ production. Events with 3 ℓ + \geq 1 jet(s) (1*b*-tagged) + $\not\!\!\!E_T$ are used. The SM predictions of the corresponding branching ratios are of the order of 10^{-14} .
- ²SIRUNYAN 17E based on 19.7 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. The final states $t \bar{t} \rightarrow$ $\ell^+ \ell^- \ell'^\pm \nu$ + jets (ℓ , $\ell' = e$, μ) are investigated and the cross section $\sigma(pp \rightarrow t Zq \rightarrow tZq)$ $\ell \nu b \ell^+ \ell^- q) = 10^{+8}_{-7}$ fb is measured, giving no sign of FCNC decays of the top quark.
- ³AAD 16D based on 20.3 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. The FCNC decay is searched for in $t\bar{t}$ events in the final state (bW)(qZ) when both W and Z decay leptonically, giving 3 charged leptons.
- ⁴Based on 36.1 fb⁻¹ of *pp* data at $\sqrt{s} = 13$ TeV. The final states $t\bar{t} \rightarrow \ell^+ \ell^- \ell'^\pm \nu$ + jets (ℓ , $\ell' = e$, μ) are investigated and no significant excess over the SM background contributions is observed.
- ⁵ Based on 19.7 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. The flavor changing decay is searched for in $t\bar{t}$ events in the final state (bW)(qZ) when both W and Z decay leptoically, giving 3 charged leptons.
- ⁶ CHATRCHYAN 14S combined search limit from this and CHATRCHYAN 13F data. ⁷ Based on 5.0 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. Search for FCNC decays of the top quark in $t\bar{t} \rightarrow \ell^+ \ell^- \ell'^\pm \nu$ + jets $(\ell, \ell' = e, \mu)$ final states found no excess of signal events. ⁸Based on 2.1 fb⁻¹ of *pp* data at $\sqrt{s} = 7$ TeV.
- 9 Based on 4.1 fb $^{-1}$ of data. ABAZOV 11M searched for FCNC decays of the top quark in $t\overline{t} \rightarrow \ell^+ \ell^- \ell'^\pm \nu$ + jets $(\ell, \ell' = e, \mu)$ final states, and absence of the signal gives the bound.
- ¹⁰ Based on $p\overline{p}$ data of 1.52 fb⁻¹. AALTONEN 09AL compared $t\overline{t} \rightarrow WbWb \rightarrow \ell \nu bjjb$ and $t\bar{t} \rightarrow ZcWb \rightarrow \ell\ell c j j b$ decay chains, and absence of the latter signal gives the bound. The result is for 100% longitudinally polarized Z boson and the theoretical $t\bar{t}$ production cross section The results for different Z polarizations and those without the cross section assumption are given in their Table XII.
- ¹¹Result is based on 1.9 fb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. $t\bar{t} \rightarrow WbZq$ or ZqZq processes have been looked for in $Z + \geq 4$ jet events with and without *b*-tag. No signal leads to the bound B($t \rightarrow Zq$) < 0.037 (0.041) for $m_t = 175$ (170) GeV.
- 12 ABDALLAH 04C looked for single top production via FCNC in the reaction $e^+e^-
 ightarrow$ $\overline{t}c$ or $\overline{t}u$ in 541 pb⁻¹ of data at \sqrt{s} =189–208 GeV. No deviation from the SM is found, which leads to the bound on $B(t \rightarrow Zq)$, where q is a u or a c quark, for $m_t = 175$ GeV when $B(t \rightarrow \gamma q)=0$ is assumed. The conversion to the listed bound is from private communication, O. Yushchenko, April 2005. The bounds on the effective t-q- γ and t-q-Z couplings are given in their Fig. 7 and Table 4, for $m_{t} = 170-180$ GeV, where most conservative bounds are found by choosing the chiral couplings to maximize the negative interference between the virtual γ and Z exchange amplitudes.

- 13 ACHARD 02J looked for single top production via FCNC in the reaction $e^+e^- o ~ar{t}\,c$ or $\overline{t}u$ in 634 pb⁻¹ of data at \sqrt{s} = 189–209 GeV. No deviation from the SM is found, which leads to a bound on the top-quark decay branching fraction B(Zq), where q is a u or c quark. The bound assumes $B(\gamma q)=0$ and is for $m_t = 175$ GeV; bounds for $m_t = 170$ GeV and 180 GeV and B(γq) $\neq 0$ are given in Fig. 5 and Table 7. Table 6 gives constraints on t-c-e-e four-fermi contact interactions.
- ¹⁴ HEISTER 02Q looked for single top production via FCNC in the reaction $e^+e^- \rightarrow \overline{t}c$ or $\overline{t}u$ in 214 pb⁻¹ of data at \sqrt{s} = 204–209 GeV. No deviation from the SM is found, which leads to a bound on the branching fraction B(Zq), where q is a u or c quark. The bound assumes $B(\gamma q)=0$ and is for $m_t=174$ GeV. Bounds on the effective t- (c or u)- γ and t- (c or u)- Z couplings are given in their Fig. 2.
- 15 ABBIENDI 01T looked for single top production via FCNC in the reaction $e^+e^- o ~ar{t}\,c$ or $\overline{t}u$ in 600 pb⁻¹ of data at \sqrt{s} = 189–209 GeV. No deviation from the SM is found, which leads to bounds on the branching fractions B(Zq) and $B(\gamma q)$, where q is a u or c quark. The result is obtained for $m_t = 174$ GeV. The upper bound becomes 9.7% (20.6%) for $m_t = 169$ (179) GeV. Bounds on the effective t- (c or u)- γ and t- (c or u)-Z couplings are given in their Fig. 4.
- 16 BARATE 00S looked for single top production via FCNC in the reaction $e^+e^-
 ightarrow \, \overline{t} \, c$ or $\overline{t}u$ in 411 pb⁻¹ of data at c.m. energies between 189 and 202 GeV. No deviation from the SM is found, which leads to a bound on the branching fraction. The bound assumes $B(\gamma q)=0$. Bounds on the effective t- (c or u)- γ and t- (c or u)-Z couplings are given in their Fig. 4.
- 17 ABE 98G looked for $t \, \overline{t}$ events where one t decays into three jets and the other decays into qZ with $Z \to \ell \ell$. The quoted bound is for $\Gamma(Zq)/\Gamma(Wb)$.

$\Gamma(Hu)/\Gamma_{total}$

 Γ_{10}/Γ

VALUE (units 10^{-4})	CL%	DOCUMENT ID	TECN	COMMENT
< 1.9	95	¹ TUMASYAN	22A CMS	$t \rightarrow Hu (H \rightarrow \gamma \gamma)$
$\bullet \bullet \bullet$ We do not u	ise the fo	llowing data for av	erages, fits, li	mits, etc. • • •
< 3.8	95	² AAD	23cj ATLS	$pp ightarrow tH ext{ or } t ightarrow Hu \ (H ightarrow \gamma \gamma)$
< 4.0	95	³ AAD	23cj ATLS	$pp \rightarrow tH \text{ or } t \rightarrow Hu$ (combined with $H \rightarrow \gamma\gamma$, $H \rightarrow bb, H \rightarrow \tau\tau$)
< 6.9	95	⁴ AAD	23н ATLS	$pp \rightarrow tH \text{ or } t \rightarrow Hu$ $(H \rightarrow \tau\tau)$
< 7.9	95	⁵ TUMASYAN	22K CMS	$t \rightarrow Hu (H \rightarrow bb)$
<52	95	⁶ AABOUD	19s ATLS	$t \rightarrow Hu (H \rightarrow bb)$
<17	95	⁷ AABOUD	19s ATLS	$t \rightarrow Hu (H \rightarrow \tau \tau)$
<12	95	⁸ AABOUD	19s ATLS	combination of $t \rightarrow Hu$ ($H \rightarrow WW$, ZZ, $\tau \tau$,
<19	95	⁹ AABOUD	18x ATLS	$\gamma \gamma, \ \overline{b}$) $t \rightarrow Hu (H \rightarrow WW, ZZ, \tau)$
<47	95	¹⁰ SIRUNYAN	18BC CMS	$t \rightarrow Hu (H \rightarrow bb)$
<24	95	¹¹ AABOUD	17AV ATLS	$t \rightarrow Hu(H \rightarrow \gamma \gamma)$
<55	95	¹² KHACHATRY.	17I CMS	$t \rightarrow Hu (H \rightarrow WW, ZZ,$
<61 <79	95 95	¹³ AAD ¹⁴ AAD	15co ATLS 14aa ATLS	$ au au, \gamma \gamma, b \overline{b})$ t ightarrow H u (H ightarrow b b) $t ightarrow H q (q=u,c; H ightarrow \gamma \gamma)$

¹TUMASYAN 22A based on 137 fb⁻¹ at $\sqrt{s} = 13$ TeV of pp data. The processes considered include both the associated production of a single top quark with a Higgs boson and the decay $t \rightarrow Hu$ in $t\bar{t}$ production using $H \rightarrow \gamma \gamma$.

- ² AAD 23CJ based on 139 fb⁻¹ at $\sqrt{s} = 13$ TeV of pp data. The processes considered include both the associated production of a single top quark with a Higgs boson and the decay $t \rightarrow Hu$ in $t\bar{t}$ production using $H \rightarrow \gamma\gamma$. Limits on the SMEFT Wilson coefficients are derived.
- ³AAD 23CJ based on 139 fb⁻¹ at $\sqrt{s} = 13$ TeV of pp data. The results are combined with searches in the $H \rightarrow \gamma \gamma$, $H \rightarrow bb$, and $H \rightarrow \tau \tau$ final states. Limits on the SMEFT Wilson coefficients are also derived. ⁴AAD 23H based on 139 fb⁻¹ at $\sqrt{s} = 13$ TeV of pp data. Uses events with one or two
- ⁴ AAD 23H based on 139 fb⁻¹ at $\sqrt{s} = 13$ TeV of pp data. Uses events with one or two hadronically decaying τ and multiple jets. The limit corresponds to $(3.5^{+1.5}_{-1.0}) \times 10^{-4}$ measurement.
- ⁵ TUMASYAN 22K based on 137 fb⁻¹ at $\sqrt{s} = 13$ TeV of *pp* data. Uses events with one isolated lepton and multiple jets (including $\geq 2b$ -jets). Deep neural networks are used for kinematical event reconstruction.
- ⁶AABOUD 19S based on 36.1 fb⁻¹ at $\sqrt{s} = 13$ TeV of pp data. Uses events with one isolated lepton and multiple jets (several of them *b*-tagged with high purity). A multivariate analysis is performed to distinguish the signal from backgrounds.
- ⁷ AABOUD 19S based on 36.1 fb⁻¹ at $\sqrt{s} = 13$ TeV of pp data. Uses events with one or two hadronically decaying τ and multiple jets. A multivariate analysis is performed to distinguish the signal from backgrounds.
- ⁸ AABOUD 19S based on 36.1 fb⁻¹ at $\sqrt{s} = 13$ TeV of pp data. The searches using $H \rightarrow bb$ and $H \rightarrow \tau_h \tau_h$ are combined with searches in diphoton and multilepton final states. The upper limit on the Yukawa coupling $|Y_{tuH}| < 0.066$ (95% CL) is obtained.
- ⁹AABOUD 18x based on 36.1 fb⁻¹ at $\sqrt{s} = 13$ TeV of pp data. $\ell\ell$ (same sign) $+ \ge 4j$ mode and $\ell\ell\ell + \ge 2j$ mode are targeted and specialized boosted decision trees are used to distinguish signals from backgrounds.
- ¹⁰ SIRUNYAN 18BC based on 35.9 fb⁻¹ at $\sqrt{s} = 13$ TeV of pp data. Two channels $pp \rightarrow tH$ and $pp \rightarrow t\overline{t}$ in final states with one isolated lepton and $\geq=3$ jets with $\geq=2$ b jets are considered assuming a single tHu FCNC coupling. Reconstructed kinematical variables are fed into a multivariate analysis and no significant deviation is observed from the predicted background.
- ¹¹ AABOUD 17AV based on 36.1 fb⁻¹ at $\sqrt{s} = 13$ TeV of pp data. Search for $t\bar{t}$ events, where the other top quark decays hadronically or semi-leptonically.
- ¹² KHACHATRYAN 17I based on 19.7 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV, using the topologies $t\overline{t} \rightarrow Hq+Wb$, where q=u, c.
- ¹³ AAD 15CO based on 20.3 fb⁻¹ at $\sqrt{s} = 8$ TeV of pp data. Searches for $t\bar{t}$ events, where the other top quark decays semi-leptonically. Exploits high multiplicity of *b*-jets and uses a likelihood discriminant. Combining with other ATLAS searches for different Higgs decay modes, B($t \rightarrow Hc$) < 0.46% and B($t \rightarrow Hu$) < 0.45% are obtained.
- ¹⁴ AAD 14AA based on 4.7 fb⁻¹ at $\sqrt{s} = 7$ TeV and 20.3 fb⁻¹ at $\sqrt{s} = 8$ TeV of pp data. The upper-bound is for the sum of Br $(t \rightarrow Hc)$ and Br $(t \rightarrow Hu)$. Search for $t\bar{t}$ events, where the other top quark decays hadronically or semi-leptonically. The upper bound constrains the *H*-*t*-*c* Yukawa couplings $\sqrt{|Y_{tc_l}^H|^2 + |Y_{tc_R}^H|^2} < 0.17$ (95% CL).

$\Gamma(Hc)/\Gamma_{total}$

 Γ_{11}/Γ

VALUE (units 10^{-4}) CL% DOCUMENT ID TECN COMMENT $\begin{array}{c} pp \rightarrow tH \text{ or } t \rightarrow Hc \\ (H \rightarrow \gamma \gamma) \end{array}$ 1 AAD 23CL ATLS 95 < 4.3 • • • We do not use the following data for averages, fits, limits, etc. • • • 2 AAD < 5.8 95 $pp \rightarrow tH \text{ or } t \rightarrow Hc \text{ (com-}$ 23CJ ATLS bined with $H \rightarrow \gamma \gamma$, $H \rightarrow bb, H \rightarrow \tau \tau$) 23H ATLS $pp \rightarrow tH \text{ or } t \rightarrow Hc$ $(H \rightarrow \tau \tau)$ ³ AAD 95 < 9.4

< 7.3 < 9.4 <11	95 95 95	$ \begin{array}{cccc} {}^{4} \text{TUMASYAN} & 22\text{A} \text{CMS} & t \rightarrow Hc \ (H \rightarrow \gamma \gamma) \\ {}^{5} \text{TUMASYAN} & 22\text{K} \text{CMS} & t \rightarrow Hc \ (H \rightarrow bb) \\ {}^{6} \text{AABOUD} & 19\text{S} \text{ATLS} & \text{combination of } t \rightarrow Hc \\ & (H \rightarrow WW, \ ZZ, \ \tau \tau, \end{array} $
<42 <19 <16	95 95 95	$\begin{array}{ccc} & & & & \gamma\gamma, & bb \end{array} \\ \hline 7 \text{ AABOUD} & 19 \text{ S} \text{ ATLS} & t \rightarrow Hc \ (H \rightarrow bb) \\ \hline 8 \text{ AABOUD} & 19 \text{ S} \text{ ATLS} & t \rightarrow Hc \ (H \rightarrow \tau\tau) \\ \hline 9 \text{ AABOUD} & 18 \text{ X} \text{ ATLS} & t \rightarrow Hc \ (H \rightarrow WW, \ ZZ, \ z=1 \end{array}$
<47 <22 <40	95 95 95	^{au}
$<56 <79 < 1.3 imes 10^2 <56$	95 95 95 95	$\begin{array}{cccc} & & & & & \tau\tau, & \gamma\gamma, & b\overline{b} \end{array} \\ \begin{array}{cccc} & & & 13 \text{ AAD} & & 15 \text{co ATLS} & t \rightarrow Hc & (H \rightarrow bb) \\ & & 14 \text{ AAD} & & 14 \text{AA ATLS} & t \rightarrow Hq & (q=u,c; H \rightarrow \gamma\gamma) \\ & & 15 \text{ CHATRCHYAN 14R CMS} & t \rightarrow Hc & (H \rightarrow \geq 2 \ell) \\ & & 16 \text{ KHACHATRY14Q CMS} & t \rightarrow Hc & (H \rightarrow \gamma\gamma \text{ or leptons}) \end{array}$

¹ AAD 23CJ based on 139 fb⁻¹ at $\sqrt{s} = 13$ TeV of pp data. The processes considered include both the associated production of a single top quark with a Higgs boson and the decay $t \rightarrow Hc$ in $t\bar{t}$ production using $H \rightarrow \gamma\gamma$. Limits on the SMEFT Wilson coefficients are derived.

coefficients are derived. ²AAD 23CJ based on 139 fb⁻¹ at $\sqrt{s} = 13$ TeV of pp data. The results are combined with searches in the $H \rightarrow \gamma \gamma$, $H \rightarrow bb$, and $H \rightarrow \tau \tau$ final states. Limits on the SMEFT Wilson coefficients are also derived. ³AAD 23H based on 139 fb⁻¹ at $\sqrt{s} = 13$ TeV of pp data. Uses events with one or two

³ AAD 23H based on 139 fb⁻¹ at $\sqrt{s} = 13$ TeV of pp data. Uses events with one or two hadronically decaying τ and multiple jets. The limit corresponds to $(4.8^{+2.2}_{-1.4}) \times 10^{-4}$ measurement.

⁴ TUMASYAN 22A based on 137 fb⁻¹ at $\sqrt{s} = 13$ TeV of pp data. The processes considered include both the associated production of a single top quark with a Higgs boson and the decay $t \rightarrow Hc$ in $t\bar{t}$ production using $H \rightarrow \gamma\gamma$.

⁵ TUMASYAN 22K based on 137 fb⁻¹ at $\sqrt{s} = 13$ TeV of pp data. Uses events with one isolated lepton and multiple jets (including $\geq 2b$ -jets). Deep neural networks are used for kinematical event reconstruction.

⁶ AABOUD 19S based on 36.1 fb⁻¹ at $\sqrt{s} = 13$ TeV of pp data. The searches using $H \rightarrow bb$ and $H \rightarrow \tau_h \tau_h$ are combined with searches in diphoton and multilepton final states. The upper limit on the Yukawa coupling $|Y_{tcH}| < 0.064$ (95% CL) is obtained.

⁷AABOUD 19S based on 36.1 fb⁻¹ at $\sqrt{s} = 13$ TeV of pp data. Uses events with one isolated lepton and multiple jets (several of them *b*-tagged with high purity). A multivariate analysis is performed to distinguish the signal from backgrounds.

⁸ AABOUD 19S based on 36.1 fb⁻¹ at $\sqrt{s} = 13$ TeV of pp data. Uses events with one or two hadronically decaying τ and multiple jets. A multivariate analysis is performed to distinguish the signal from backgrounds.

⁹ AABOUD 18x based on 36.1 fb⁻¹ at $\sqrt{s} = 13$ TeV of pp data. $\ell\ell$ (same sign) $+ \ge 4j$ mode and $\ell\ell\ell + \ge 2j$ mode are targeted and specialized boosted decision trees are used to distinguish signals from backgrounds.

¹⁰ SIRUNYAN 18BC based on 35.9 fb⁻¹ at $\sqrt{s} = 13$ TeV of pp data. Two channels $pp \rightarrow tH$ and $pp \rightarrow t\overline{t}$ in final states with one isolated lepton and $\geq=3$ jets with $\geq=2$ b jets are considered assuming a single tHc FCNC coupling. Reconstructed kinematical variables are fed into a multivariate analysis and no significant deviation is observed from the predicted background.

¹¹ AABOUD 17AV based on 36.1 fb⁻¹ at $\sqrt{s} = 13$ TeV of pp data. Search for $t\bar{t}$ events, where the other top quark decays hadronically or semi-leptonically. The upper bound on the *H*-t-c Yukawa couplings is 0.090 (95% CL).

- ¹² KHACHATRYAN 17I based on 19.7 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV, using the topologies $t\overline{t} \rightarrow Hq + Wb$, where q=u, c.
- ¹³AAD 15C0 based on 20.3 fb⁻¹ at $\sqrt{s} = 8$ TeV of pp data. Searches for $t\overline{t}$ events, where the other top quark decays semi-leptonically. Exploits high multiplicity of *b*-jets and uses a likelihood discriminant. Combining with other ATLAS searches for different Higgs decay modes, B($t \rightarrow Hc$) < 0.46% and B($t \rightarrow Hu$) < 0.45% are obtained.
- ¹⁴ AAD 14AA based on 4.7 fb⁻¹ at $\sqrt{s} = 7$ TeV and 20.3 fb⁻¹ at $\sqrt{s} = 8$ TeV of pp data. The upper-bound is for the sum of Br $(t \rightarrow Hc)$ and Br $(t \rightarrow Hu)$. Search for $t\bar{t}$ events, where the other top quark decays hadronically or semi-leptonically. The upper bound constraints the *H*-*t*-*c* Yukawa couplings $\sqrt{|Y_{H_{c}}^{H}|^{2} + |Y_{H_{c}}^{H}|^{2}} < 0.17$ (95% CL).

constrains the *H*-*t*-*c* Yukawa couplings
$$\sqrt{|Y_{tc_L}^H|^2 + |Y_{tc_R}^H|^2} < 0.17$$
 (95% CL

- ¹⁵ Based on 19.5 fb⁻¹ of *pp* data at $\sqrt{s} = 8$ TeV. Search for final states with 3 or more isolated high E_T charged leptons ($\ell = e, \mu$) bounds the $t \rightarrow Hc$ decay in $t\bar{t}$ events when *H* decays contain a pair of leptons. The upper bound constrains the *H*-*t*-*c* Yukawa couplings $\sqrt{|Y_{tc_L}^H|^2 + |Y_{tc_R}^H|^2} < 0.21$ (95% CL).
- ¹⁶ KHACHATRYAN 14Q based on 19.5 fb⁻¹ at $\sqrt{s} = 8$ TeV of pp data. Search for final states with ≥ 3 isolated charged leptons or with a photon pair accompanied by ≥ 1 lepton(s).

$\Gamma(\ell^+ \overline{q} \overline{q}'(q=d,s,b;q'=u,c))/\Gamma_{total}$

 Γ_{12}/Γ

	• • • • • • • •	EVEN			/
VALUE	CL%	DOCUMENT ID	TECN	COMMENT	
<1.6 × 10 ⁻³	95	¹ CHATRCHYAN 140	CMS	$\mu + dijets$	
$\bullet \bullet \bullet$ We do not use the	following	data for averages, fits,	limits, e	etc. • • •	
$< 1.7 \times 10^{-3}$	95	¹ CHATRCHYAN 140	CMS	e + dijets	

¹ Based on 19.5 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Baryon number violating decays of the top quark are searched for in $t\bar{t}$ production events where one of the pair decays into hadronic three jets.

$\Gamma(e^{\pm}\mu^{\mp}c)/\Gamma_{total}$					Г ₁₃ /Г
VALUE	DOCUMENT ID		TECN	COMMENT	
<8.9 × 10 ⁻⁷	¹ TUMASYAN	22z	CMS	<i>pp</i> at 13 TeV	
1			,		,

¹TUMASYAN 22Z analysis includes both the production $(c \rightarrow e\mu t)$ and decay $(t \rightarrow e\mu c)$ modes of the top quark through CFLV interactions. With no significant excess over the standard model expectation, the limits are set at 95% CL on the B $(t \rightarrow e\mu c)$ of 1.31×10^{-6} , 0.89×10^{-6} , 2.59×10^{-6} for vector-, scalar-, and tensor-like CLFV four-fermion effective interactions, respectively.

$\Gamma(e^{\pm}\mu^{\mp}u)/\Gamma_{total}$				Г ₁₄ /Г		
VALUE	DOCUMENT ID		TECN	COMMENT		
<7 × 10 ⁻⁸	¹ TUMASYAN	22z	CMS	<i>pp</i> at 13 TeV		
¹ TUMASYAN 22Z analysis includes both the production $(u \rightarrow e \mu t)$ and decay $(t \rightarrow e \mu u)$ modes of the top quark through CFLV interactions. With no significant excess						

 $e\mu u$) modes of the top quark through CFLV interactions. With no significant excess over the standard model expectation, the limits are set at 95% CL on the B($t \rightarrow e\mu u$) of 0.13×10^{-6} , 0.07×10^{-6} , 0.25×10^{-6} for vector-, scalar-, and tensor-like CLFV four-fermion effective interactions, respectively.

https://pdg.lbl.gov

. _ 、

t-quark EW Couplings

W helicity fractions in top decays. F_0 is the fraction of longitudinal and F_+ the fraction of right-handed W bosons. F_{V+A} is the fraction of V+A current in top decays. The effective Lagrangian (cited by ABAZOV 08AI) has terms \mathbf{f}_1^L and \mathbf{f}_1^R for V-A and V+A couplings, \mathbf{f}_2^L and \mathbf{f}_2^R for tensor couplings with \mathbf{b}_R and \mathbf{b}_L respectively.

*F*₀

VALUE	DOCUMENT ID	TECN	COMMENT
0.693 ± 0.013 OUR AVERAG	E		
$0.693 \!\pm\! 0.009 \!\pm\! 0.011$	¹ AAD	20Y LHC	ATLAS+CMS combined
$0.726 \!\pm\! 0.066 \!\pm\! 0.067$	² AALTONEN	13D CDF	$F_0 = B(t \rightarrow W_0 b)$
$0.682\!\pm\!0.030\!\pm\!0.033$	³ CHATRCHYAN	13BH CMS	$\tilde{F_0} = B(t \rightarrow W_0 b)$
0.67 ± 0.07		12bg ATLS	$F_0 = B(t \rightarrow W_0 b)$
$0.722\!\pm\!0.062\!\pm\!0.052$	⁵ AALTONEN	12Z TEVA	$F_0 = B(t \rightarrow W_0 b)$
$0.669 \!\pm\! 0.078 \!\pm\! 0.065$		11C D0	$F_0 = B(t \rightarrow W_0 b)$
$0.91 \ \pm 0.37 \ \pm 0.13$	⁷ AFFOLDER	00B CDF	$F_0 = B(t \rightarrow W_0 b)$
\bullet \bullet We do not use the following	owing data for avera	ages, fits, lim	its, etc. ● ● ●
0.70 ± 0.05	⁸ AABOUD	17bb ATLS	$F_0 = 1 - f_1$, Repl by AAD 20Y
$0.681\!\pm\!0.012\!\pm\!0.023$	⁹ KHACHATRY	.16BU CMS	$F_0 = B(t \rightarrow W_0 b)$, Repl by AAD 20Y
$0.70\ \pm 0.07\ \pm 0.04$	¹⁰ AALTONEN	10Q CDF	Repl. by AALTONEN 12Z
$0.62\ \pm 0.10\ \pm 0.05$	¹¹ AALTONEN	09Q CDF	Repl. by AALTONEN 10Q
$0.425 \!\pm\! 0.166 \!\pm\! 0.102$	¹² ABAZOV	08B D0	Repl. by ABAZOV 11C
$\begin{array}{ccc} 0.85 & +0.15 \\ -0.22 & \pm 0.06 \end{array}$	¹³ ABULENCIA	07I CDF	$F_0 = B(t \rightarrow W_0 b)$
$0.74 \begin{array}{c} +0.22 \\ -0.34 \end{array}$	¹⁴ ABULENCIA	06U CDF	$F_0 = B(t \rightarrow W_0 b)$
0.56 ± 0.31	¹⁵ ABAZOV	05G D0	$F_0 = B(t \rightarrow W_0 b)$

¹ AAD 20Y based on about 20 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV for each experiment. The first error stands for the sum of the statistical and background uncertainties, and the second error for the remaining systematic uncertainties. The measurements used events with one lepton and different jet multiplicities in the final state. The result is consistent with the NNLO SM prediction of 0.687 \pm 0.005 for $m_t = 172.8 \pm 1.3$ GeV.

- ² Based on 8.7 fb⁻¹ of data in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV using $t\overline{t}$ events with $\ell + \mathcal{E}_T + \ge 4$ jets($\ge 1 b$), and under the constraint $F_0 + F_+ + F_- = 1$. The statistical errors of F_0 and F_+ are correlated with correlation coefficient $\rho(F_0,F_+) = -0.69$.
- ³Based on 5.0 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. CHATRCHYAN 13BH studied tt events with large $\not\!\!E_T$ and $\ell + \ge 4$ jets using a constrained kinematic fit.
- ⁴ Based on 1.04 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. AAD 12BG studied tt events with large $\not\!\!E_T$ and either $\ell + \ge 4j$ or $\ell\ell + \ge 2j$. The uncertainties are not independent, $\rho(F_0, F_-) = -0.96$.
- ⁵ Based on 2.7 and 5.1 fb⁻¹ of CDF data in ℓ + jets and dilepton channels, and 5.4 fb⁻¹ of D0 data in ℓ + jets and dilepton channels. $F_0 = 0.682 \pm 0.035 \pm 0.046$ if $F_+ = 0.0017(1)$, while $F_+ = -0.015 \pm 0.018 \pm 0.030$ if $F_0 = 0.688(4)$, where the assumed fixed values are the SM prediction for $m_t = 173.3 \pm 1.1$ GeV and $m_W = 80.399 \pm 0.023$ GeV.

⁶ Results are based on 5.4 fb⁻¹ of data in $p\overline{p}$ collisions at 1.96 TeV, including those of ABAZOV 08B. Under the SM constraint of $f_0 = 0.698$ (for $m_t = 173.3$ GeV, $m_W = 80.399$ GeV), $f_+ = 0.010 \pm 0.022 \pm 0.030$ is obtained.

⁷ AFFOLDER 00B studied the angular distribution of leptonic decays of W bosons in $t \rightarrow Wb$ events. The ratio F_0 is the fraction of the helicity zero (longitudinal) W bosons

in the decaying top quark rest frame. B($t \rightarrow W_+ b$) is the fraction of positive helicity (right-handed) positive charge W bosons in the top quark decays. It is obtained by assuming the Standard Model value of F_0 .

- ⁸AABOUD 17BB based on 20.2 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Triple-differential decay rate of top quark in the *t*-channel single-top production is used to simultaneously determine five generalized W tb couplings as well as the top polarization. No assumption is made for the other couplings. See this paper for constraints on other couplings not included here. The paper reported f_1 , and we converted it to F_0 .
- ¹⁰ Results are based on 2.7 fb⁻¹ of data in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV. F_0 result is obtained by assuming $F_+ = 0$, while F_+ result is obtained for $F_0 = 0.70$, the SM value. Model independent fits for the two fractions give $F_0 = 0.88 \pm 0.11 \pm 0.06$ and $F_+ = -0.15 \pm 0.07 \pm 0.06$ with correlation coefficient of -0.59. The results are for $m_t = 175$ GeV.
- ¹¹ Results are based on 1.9 fb⁻¹ of data in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV. F_0 result is obtained assuming $F_+ = 0$, while F_+ result is obtained for $F_0 = 0.70$, the SM values. Model independent fits for the two fractions give $F_0 = 0.66 \pm 0.16 \pm 0.05$ and $F_+ = -0.03 \pm 0.06 \pm 0.03$.
- ¹²Based on 1 fb⁻¹ at $\sqrt{s} = 1.96$ TeV.
- 13 Based on 318 pb $^{-1}$ of data at $\sqrt{s} = 1.96$ TeV.
- ¹⁴ Based on 200 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. $t \rightarrow Wb \rightarrow \ell \nu b$ ($\ell = e \text{ or } \mu$). The errors are stat + syst.
- ¹⁵ ABAZOV 05G studied the angular distribution of leptonic decays of W bosons in $t\bar{t}$ candidate events with lepton + jets final states, and obtained the fraction of longitudinally polarized W under the constraint of no right-handed current, $F_+ = 0$. Based on 125 pb⁻¹ of data at $\sqrt{s} = 1.8$ TeV.

F_

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
0.315 ± 0.010 OUR AVE	RAGE			
$0.315\!\pm\!0.006\!\pm\!0.009$		¹ AAD		ATLAS+CMS com- bined
$0.310\!\pm\!0.022\!\pm\!0.022$		-		$F_{-} = B(t \rightarrow W_{-}b)$
0.32 ± 0.04		³ AAD	12bg ATLS	$F_{-} = B(t \rightarrow W_{-}b)$
$\bullet \bullet \bullet$ We do not use the	ne followin	g data for average	s, fits, limits	, etc. ● ● ●
$> 0.264 \pm 0.044$	95	⁴ AABOUD	17BB ATLS	$F_{-} = f_1(1 - f_1^+),$

- $\begin{array}{c} & 1 \\ \text{Repl. by AAD 20Y} \\ \text{SKHACHATRY...16BU CMS} \end{array}$
 - ¹ AAD 20Y based on about 20 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV for each experiment. The first error stands for the sum of the statistical and background uncertainties, and the second error for the remaining systematic uncertainties. The measurements used events with one lepton and different jet multiplicities in the final state. The result is consistent with the NNLO SM prediction of 0.311 ± 0.005 for $m_t = 172.8 \pm 1.3$ GeV.
 - ²Based on 5.0 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. CHATRCHYAN 13BH studied tt events with large $\not\!\!E_T$ and $\ell + \ge 4$ jets using a constrained kinematic fit.

- ⁴ AABOUD 17BB based on 20.2 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Triple-differential decay rate of top quark in the *t*-channel single-top production is used to simultaneously determine five generalized W tb couplings as well as the top polarization. No assumption is made for the other couplings. The authors reported $f_1 = 0.30 \pm 0.05$ and $f_1^+ < 0.120$ which we converted to $F_- = f_1(1 f_1^+)$. See this paper for constraints on other couplings not included here.
- ⁵ KHACHATRYAN 16BU based on 19.8 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV using $t\bar{t}$ events with $\ell + \not{\!\!\!E}_T + \geq 4$ jets($\geq 2 b$). The errors of F_0 and F_- are correlated with a correlation coefficient $\rho(F_0, F_-) = -0.87$. The result is consistent with the NNLO SM prediction of 0.311 \pm 0.005 for $m_t = 172.8 \pm 1.3$ GeV.

F₊

T						
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	<u>COMMENT</u>	
-0.005 ± 0.007 OUR	AVERAGE					
$-0.008 \pm 0.005 \pm 0.000$	06	¹ AAD	20Y	LHC	$ATLAS{+}CMS$	com-
	-0	2	105		bined	
$-0.045\pm0.044\pm0.05$	80	² AALTONEN	13D	CDF	$F_+ = B(t \rightarrow$	$VV_+ b$
$0.008 \pm 0.012 \pm 0.012$	L4	³ CHATRCHYAN	1 3 BH	CMS	$F_{+}^{'} = B(t \rightarrow$	$W_{\pm}^{\prime}b)$
$0.01 \ \pm 0.05$		⁴ AAD	12bg	ATLS	$F_{+}^{'} = B(t \rightarrow$	$W_{\pm}^{\prime}b)$
$0.023 \pm 0.041 \pm 0.03$	34	⁵ ABAZOV	11C		$F_{+}^{'} = B(t \rightarrow$	
$0.11 \hspace{0.1in} \pm 0.15$		⁶ AFFOLDER	00 B	CDF	$F_{+}^{'} = B(t \rightarrow$	
• • • W/a da not usa th	o following	data for averages	fite 1	imite ot		

• • • We do not use the following data for averages, fits, limits, etc. • • •

$<\ 0.036 \pm 0.006$	95	⁷ AABOUD	17bb ATLS	$F_+ = f_1 f_1^+$, Repl. by
$-0.004\!\pm\!0.005\!\pm\!0.014$		⁸ KHACHATRY.	16BU CMS	AAD $20\overline{Y}$ $F_{+} = B(t \rightarrow W_{+}b),$ Repl. by AAD $20\overline{Y}$
$\begin{array}{r} -0.033 \!\pm\! 0.034 \!\pm\! 0.031 \\ -0.01 \ \pm\! 0.02 \ \pm\! 0.05 \end{array}$		⁹ AALTONEN ¹⁰ AALTONEN	12z TEVA 10Q CDF	$F_{+} = B(t \rightarrow W_{+}b)$ Repl. by AALTO- NEN 13D
$-0.04 \pm 0.04 \pm 0.03$		11 AALTONEN	09Q CDF	Repl. by AALTO- NEN 10Q
$\begin{array}{c} 0.119 \!\pm\! 0.090 \!\pm\! 0.053 \\ 0.056 \!\pm\! 0.080 \!\pm\! 0.057 \end{array}$		¹² ABAZOV ¹³ ABAZOV	08b D0 07d D0	Repl. by ABAZOV 11C $F_{+} = B(t \rightarrow W_{+}b)$
$0.05 \begin{array}{c} +0.11 \\ -0.05 \end{array} \pm 0.03$		¹⁴ ABULENCIA	07I CDF	$F_+ = B(t \rightarrow W_+ b)$
< 0.26	95	¹⁴ ABULENCIA	07I CDF	$F_+ = B(t \rightarrow W_+ b)$
< 0.27	95	¹⁵ ABULENCIA	060 CDF	$F_+ = B(t \rightarrow W_+ b)$
$0.00 \ \pm 0.13 \ \pm 0.07$		¹⁶ ABAZOV	05L D0	$F_+ = B(t \rightarrow W_+ b)$
< 0.25	95	¹⁶ ABAZOV	05L D0	$F_+ = B(t \rightarrow W_+ b)$
< 0.24	95	¹⁷ ACOSTA	05D CDF	$F_+ = B(t \rightarrow W_+ b)$

¹ AAD 20Y based on about 20 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV for each experiment. The first error stands for the sum of the statistical and background uncertainties, and the second error for the remaining systematic uncertainties. The measurements used events with one lepton and different jet multiplicities in the final state. The result is estimated from the measurements of F_0 and F_- assuming unitarity. The value is consistent with the NNLO SM prediction of 0.0017 \pm 0.0001 for $m_t = 172.8 \pm 1.3$ GeV.

³Based on 5.0 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. CHATRCHYAN 13BH studied tt events with large $\not{\!\!E_T}$ and $\ell + \geq 4$ jets using a constrained kinematic fit.

- ⁴ Based on 1.04 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. AAD 12BG studied tt events with large $\not\!\!E_T$ and either $\ell + \ge 4j$ or $\ell\ell + \ge 2j$.
- ⁵ Results are based on 5.4 fb⁻¹ of data in $p\overline{p}$ collisions at 1.96 TeV, including those of ABAZOV 08B. Under the SM constraint of $f_0 = 0.698$ (for $m_t = 173.3$ GeV, $m_W = 80.399$ GeV), $f_+ = 0.010 \pm 0.022 \pm 0.030$ is obtained.
- ⁶ AFFOLDER 00B studied the angular distribution of leptonic decays of W bosons in $t \rightarrow Wb$ events. The ratio F_0 is the fraction of the helicity zero (longitudinal) W bosons in the decaying top quark rest frame. B($t \rightarrow W_+ b$) is the fraction of positive helicity (right-handed) positive charge W bosons in the top quark decays. It is obtained by assuming the Standard Model value of F_0 .
- ⁷ AABOUD 17BB based on 20.2 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Triple-differential decay rate of top quark in the *t*-channel single-top production is used to simultaneously determine five generalized W t b couplings as well as the top polarization. No assumption is made for the other couplings. The authors reported $f_1 = 0.30 \pm 0.05$ and $f_1^+ < 0.120$

which we converted to $F_+ = f_1 f_1^+$. See this paper for constraints on other couplings not included here.

- ⁸ KHACHATRYAN 16BU based on 19.8 fb⁻¹ of *pp* data at $\sqrt{s} = 8$ TeV using $t\bar{t}$ events with $\ell + \not{\!\!E}_T + \ge 4$ jets($\ge 2 b$). The result is consistent with the NNLO SM prediction of 0.0017 \pm 0.0001 for $m_t = 172.8 \pm 1.3$ GeV.
- ⁹ Based on 2.7 and 5.1 fb⁻¹ of CDF data in ℓ + jets and dilepton channels, and 5.4 fb⁻¹ of D0 data in ℓ + jets and dilepton channels. $F_0 = 0.682 \pm 0.035 \pm 0.046$ if $F_+ = 0.0017(1)$, while $F_+ = -0.015 \pm 0.018 \pm 0.030$ if $F_0 = 0.688(4)$, where the assumed fixed values are the SM prediction for $m_t = 173.3 \pm 1.1$ GeV and $m_W = 80.399 \pm 0.023$ GeV.
- ¹⁰ Results are based on 2.7 fb⁻¹ of data in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV. F_0 result is obtained by assuming $F_+ = 0$, while F_+ result is obtained for $F_0 = 0.70$, the SM value. Model independent fits for the two fractions give $F_0 = 0.88 \pm 0.11 \pm 0.06$ and $F_+ = -0.15 \pm 0.07 \pm 0.06$ with correlation coefficient of -0.59. The results are for $m_t = 175$ GeV.
- ¹¹ Results are based on 1.9 fb⁻¹ of data in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV. F_0 result is obtained assuming $F_+ = 0$, while F_+ result is obtained for $F_0 = 0.70$, the SM values. Model independent fits for the two fractions give $F_0 = 0.66 \pm 0.16 \pm 0.05$ and $F_+ = -0.03 \pm 0.06 \pm 0.03$.
- ¹²Based on 1 fb⁻¹ at $\sqrt{s} = 1.96$ TeV.
- ¹³Based on 370 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV, using the ℓ + jets and dilepton decay channels. The result assumes $F_0 = 0.70$, and it gives $F_+ < 0.23$ at 95% CL.
- ¹⁴ Based on 318 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV.
- ¹⁵ Based on 200 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. $t \rightarrow W b \rightarrow \ell \nu b$ ($\ell = e$ or μ). The errors are stat + syst.
- ¹⁶ ABAZOV 05L studied the angular distribution of leptonic decays of W bosons in $t\bar{t}$ events, where one of the W's from t or \bar{t} decays into e or μ and the other decays hadronically. The fraction of the "+" helicity W boson is obtained by assuming $F_0 = 0.7$, which is the generic prediction for any linear combination of V and A currents. Based on 230 \pm 15 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV.
- ¹⁷ ACOSTA 05D measures the $m_{\ell}^2 + b$ distribution in $t\bar{t}$ production events where one or both W's decay leptonically to $\ell = e$ or μ , and finds a bound on the V+A coupling of the $t \, b \, W$ vertex. By assuming the SM value of the longitudinal W fraction $F_0 = B(t \rightarrow W_0 b) = 0.70$, the bound on F_+ is obtained. If the results are combined with those of AFFOLDER 00B, the bounds become $F_{V+A} < 0.61$ (95% CL) and $F_+ < 0.18$ (95% %CL), respectively. Based on 109 \pm 7 pb⁻¹ of data at $\sqrt{s} = 1.8$ TeV (run I).

F_{V+A}					
VALUE	<u>CL%</u>	DOCUMENT ID			COMMENT
< 0.29	95	¹ ABULENCIA	07 G	CDF	$F_{V+A} = B(t \rightarrow W b_R)$
$\bullet \bullet \bullet$ We do not use the	followir	ng data for averag	ges, fit	s, limits	, etc. ● ● ●
$-0.06\!\pm\!0.22\!\pm\!0.12$		¹ ABULENCIA	07 G	CDF	$F_{V+A} = B(t \rightarrow W b_R)$
< 0.80	95	² ACOSTA	05 D	CDF	$F_{V+A} = B(t \rightarrow W b_R)$

¹Based on 700 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV.

²ACOSTA 05D measures the $m_{\ell}^2 + b$ distribution in $t\bar{t}$ production events where one or both W's decay leptonically to $\ell = e$ or μ , and finds a bound on the V+A coupling of the t b W vertex. By assuming the SM value of the longitudinal W fraction $F_0 = B(t \rightarrow t)$ $W_0 b$ = 0.70, the bound on F_+ is obtained. If the results are combined with those of AFFOLDER 00B, the bounds become F $_{V+A}~<$ 0.61 (95% CL) and F $_+~<$ 0.18 (95 %CL), respectively. Based on 109 \pm 7 pb $^{-1}$ of data at \sqrt{s} = 1.8 TeV (run I).

f_1^R

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
$\bullet \bullet \bullet$ We do not use the fo	ollowing	data for averages	, fits,	limits, e	tc. ● ● ●
$-0.11 \ <$ f $rac{R}{1} \ <$ 0.16	95	¹ AAD	20Y	LHC	ATLAS+CMS com- bined
$ {\sf f}_1^R/{\sf f}_2^L < 0.37$	95	² AABOUD	17 BE	ATLS	<i>t</i> -channel single top
$ f_1^{R} < 0.16$	95	³ KHACHATRY.	17 G	CMS	t-channel single-t prod.
	95	⁴ AAD	12BG	ATLS	Constr. on Wtb vtx
$(V_{tb} f_1^R)^2 < 0.93$	95	⁵ ABAZOV	12E	D0	Single-top
$ f_1^R ^2 < 0.30$	95	⁶ ABAZOV	121	D0	single- $t + W$ helicity
$ f_1^{R} ^2 < 1.01$	95	⁷ ABAZOV	09 J	D0	$ \mathbf{f}_{1}^{L} = 1, \mathbf{f}_{2}^{L} = \mathbf{f}_{2}^{R} = 0$
$ f_1^{R} ^2 < 2.5$	95	⁸ ABAZOV	08AI	D0	$ f_1^L ^2 = 1.8^{+1.0}_{-1.3}$

¹AAD 20Y based on about 20 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV for each experiment. The measurements used events with one lepton and different jet multiplicities in the final state. The measurements of F_0 and F_- are used to set the limit. The limit is obtained by assuming the other couplings to have their SM values.

- ²AABOUD 17BB based on 20.2 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Triple-differential decay rate of top quark is used to simultaneously determine five generalized Wtb couplings as well as the top polarization. No assumption is made for the other couplings. See this paper for constraints on other couplings not included here.
- ³KHACHATRYAN 17G based on 5.0 and 19.7 fb⁻¹ of pp data at $\sqrt{s} =$ 7 and 8 TeV, respectively. A Bayesian neural network technique is used to discriminate between signal and backgrounds. This is a 95% CL exclusion limit obtained by a three-dimensional fit with simultaneous variation of (f_1^L, f_1^R, f_2^R) .
- 5 Based on 5.4 fb $^{-1}$ of data. For each value of the form factor quoted the other two are assumed to have their SM value. Their Fig. 4 shows two-dimensional posterior probability density distributions for the anomalous couplings.
 ⁶ Based on 5.4 fb⁻¹ of data in pp collisions at 1.96 TeV. Results are obtained by combining the limits from the W helicity measurements and those from the single top quark
- production.
- ⁷Based on 1 fb⁻¹ of data at $p\overline{p}$ collisions $\sqrt{s} = 1.96$ TeV. Combined result of the W helicity measurement in $t\bar{t}$ events (ABAZOV 08B) and the search for anomalous tbWcouplings in the single top production (ABAZOV 08AI). Constraints when f_1^L and one of

the anomalous couplings are simultaneously allowed to vary are given in their Fig. 1 and Table 1.

⁸ Result is based on 0.9 fb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. Single top quark production events are used to measure the Lorentz structure of the *t b W* coupling. The upper bounds on the non-standard couplings are obtained when only one non-standard coupling is allowed to be present together with the SM one, $f_1^L = V_{t,h}^*$.

f <u>2</u>					
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
$\bullet \bullet \bullet$ We do not use the	following	data for averages	, fits,	limits, e	tc. • • •
$-0.08 < f_2^L < 0.05$	95	¹ AAD	20Y	LHC	ATLAS+CMS com- bined
$ f_2^L/f_1^L < 0.29$	95	² AABOUD	17 BB	ATLS	t-channel single top
$ f_2^L < 0.057$	95	³ KHACHATRY.	17 G	CMS	t-channel single-t prod.
$-0.14 < \text{Re}(f_2^L) < 0.11$	95	⁴ AAD	12BG	ATLS	Constr. on Wtb vtx
$(V_{tb} f_2^L)^2 < 0.13$	95	⁵ ABAZOV	12E	D0	Single-top
$ f_2^L ^2 < 0.05$	95	⁶ ABAZOV	121	D0	single- $t + W$ helicity
$ f_2^L ^2 < 0.28$	95	⁷ ABAZOV	09J	D0	$ \mathbf{f}_{1}^{L} = 1, \mathbf{f}_{1}^{R} = \mathbf{f}_{2}^{R} = 0$
$ f_2^{L} ^2 < 0.5$	95	⁸ ABAZOV	08AI	D0	$ f_1^L ^2 = 1.4^{+0.6}_{-0.5}$

- ¹AAD 20Y based on about 20 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV for each experiment. The measurements used events with one lepton and different jet multiplicities in the final state. The measurements of F_0 and F_- are used to set the limit. The limit is obtained by assuming the other couplings to have their SM values.
- ²AABOUD 17BB based on 20.2 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Triple-differential decay rate of top quark is used to simultaneously determine five generalized W t b couplings as well as the top polarization. No assumption is made for the other couplings. See this paper for constraints on other couplings not included here.
- ³KHACHATRYAN 17G based on 5.0 and 19.7 fb⁻¹ of pp data at $\sqrt{s} =$ 7 and 8 TeV, respectively. A Bayesian neural network technique is used to discriminate between signal and backgrounds. This is a 95% CL exclusion limit obtained by a three-dimensional fit with simultaneous variation of (f_1^L, f_2^L, f_2^R) .
- ⁴ Based on 1.04 fb⁻¹ of *pp* data at $\sqrt{s} = 7$ TeV. AAD 12BG studied *tt* events with large \not{E}_T and either $\ell + \ge 4j$ or $\ell\ell + \ge 2j$.
- 5 Based on 5.4 fb $^{-1}$ of data. For each value of the form factor quoted the other two ⁶ Based on 5.4 fb⁻¹ of data. For each value of the form factor quoted the other two probability density distributions for the anomalous couplings.
 ⁶ Based on 5.4 fb⁻¹ of data in pp collisions at 1.96 TeV. Results are obtained by combining the limits from the W helicity measurements and those from the single top quark
- production.
- ⁷Based on 1 fb⁻¹ of data at $p\overline{p}$ collisions $\sqrt{s} = 1.96$ TeV. Combined result of the W helicity measurement in $t\bar{t}$ events (ABAZOV 08B) and the search for anomalous tbWcouplings in the single top production (ABAZOV 08AI). Constraints when f_1^L and one of the anomalous couplings are simultaneously allowed to vary are given in their Fig. 1 and Table 1.
- ⁸ Result is based on 0.9 fb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. Single top quark production events are used to measure the Lorentz structure of the t b W coupling. The upper bounds on the non-standard couplings are obtained when only one non-standard coupling is allowed to be present together with the SM one, $f_1^L = V_{t,b}^*$.

https://pdg.lbl.gov

cI.

f_2^R	
VALUE <u>CL%</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>	
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$	
$-0.04 < f_2^R < 0.02$ 95 ¹ AAD 20Y LHC ATLAS+CMS bined	com-
$-0.12 < \text{Re}(f_2^R/f_1^L) < 0.17$ 95 ² AABOUD 17BB ATLS <i>t</i> -channel single	e top
$-0.07 < \text{Im}(f_2^{\overline{R}}/f_1^{\overline{L}}) < 0.06$ 95 2 AABOUD 17BB ATLS <i>t</i> -channel single	e top
$-0.18 < \text{Im}(f_2^R) < 0.06$ 95 ³ AABOUD 171 ATLS <i>t</i> -channel single	e top
$-0.049 < f_2^{R} < 0.048$ 95 ⁴ KHACHATRY17G CMS <i>t</i> -channel single	e top
$-0.36 < \operatorname{Re}(ilde{f}_2^R/ ilde{f}_1^L) < 0.10$ 95 ⁵ AAD 16AK ATLS Single-top	
$-0.17 < \text{Im}(extsf{f}_2^R/ extsf{f}_1^L) < 0.23$ 95 5 AAD 16AK ATLS Single-top	
$-0.08 < \operatorname{Re}(\tilde{f}_2^R) < 0.04$ 95 ⁶ AAD 12BG ATLS Constr. on W	tb vtx
$(V_{tb} f_2^R)^2 < 0.06$ 95 ⁷ ABAZOV 12E D0 Single-top	
$ f_2^R ^2 < 0.12$ 95 ⁸ ABAZOV 121 D0 single- <i>t</i> + <i>W</i> k	nelicity
$ f_2^R ^2 < 0.23$ 95 ⁹ ABAZOV 09J D0 $ f_1^L =1$, $ f_1^R =1$	$ \mathbf{f}_2^L =0$
$ f_2^R ^2 < 0.3$ 95 ¹⁰ ABAZOV 08AI D0 $ f_1^L ^2 = 1.4 + 0.4 +$	

¹ AAD 20Y based on about 20 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV for each experiment. The measurements used events with one lepton and different jet multiplicities in the final state. The measurements of F_0 and F_- are used to set the limit. The limit is obtained by assuming the other couplings to have their SM values.

- ² AABOUD 17BB based on 20.2 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Triple-differential decay rate of top quark is used to simultaneously determine five generalized W t b couplings as well as the top polarization. No assumption is made for the other couplings. See this paper for constraints on other couplings not included here.
- ³AABOUD 17I based on 20.2 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. A cut-based analysis is used to discriminate between signal and backgrounds. All anomalous couplings other than Im(f)^R₂ are assumed to be zero. See this paper for a number of other asymmetries and measurements that are not included here.
- and measurements that are not included here. ⁴ KHACHATRYAN 17G based on 5.0 and 19.7 fb⁻¹ of pp data at $\sqrt{s} = 7$ and 8 TeV, respectively. A Bayesian neural network technique is used to discriminate between signal and backgrounds. This is a 95% CL exclusion limit obtained by a three-dimensional fit with simultaneous variation of (f^L₁, f^L₂, f^R₂).
- ⁵ AAD 16AK based on 4.6 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. The results are obtained from an analysis of angular distributions of the decay products of single top quarks, assuming $f_1^R = f_2^L = 0$. The fraction of decays containing transversely polarized W is measured to be $F_+ + F_- = 0.37 \pm 0.07$.
- ⁷Based on 5.4 fb⁻¹ of data. For each value of the form factor quoted the other two are assumed to have their SM value. Their Fig. 4 shows two-dimensional posterior probability density distributions for the anomalous couplings.
- ⁸ Based on 5.4 fb⁻¹ of data in $p\overline{p}$ collisions at 1.96 TeV. Results are obtained by combining the limits from the *W* helicity measurements and those from the single top quark production.
- ⁹ Based on 1 fb⁻¹ of data at $p\overline{p}$ collisions $\sqrt{s} = 1.96$ TeV. Combined result of the W helicity measurement in $t\overline{t}$ events (ABAZOV 08B) and the search for anomalous tbW couplings in the single top production (ABAZOV 08AI). Constraints when f_1^L and one of the anomalous couplings are simultaneously allowed to vary are given in their Fig. 1 and Table 1.

 10 Result is based on 0.9 fb $^{-1}$ of data at $\sqrt{s} =$ 1.96 TeV. Single top quark production events are used to measure the Lorentz structure of the t b W coupling. The upper bounds on the non-standard couplings are obtained when only one non-standard coupling is allowed to be present together with the SM one, $f_1^L = V_{t,h}^*$.

$|\mathbf{f}_{LV}\mathbf{V}_{tb}|$

Assumed that the top-quark-related CKM matrix elements obey the relation $|V_{td}|$, $|V_{ts}| \ll |V_{tb}|$ and a form factor f_{LV} is determined for each production mode and centre-of-mass energy.

VALUE	DOCUMENT ID	TECN	COMMENT
0.995±0.021 OUR AVERAGE			
0.988 ± 0.024	¹ SIRUNYAN	20AZ CMS	13 TeV, <i>t</i> -channel single top
$1.02\ \pm 0.04\ \pm 0.02$	² AABOUD	19R LHC	ATLAS $+$ CMS at 7, 8 TeV

¹SIRUNYAN 20AZ based on 35.9 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. Final states enriched in single top quark t-channel events are used. Several theories beyond the standard model are considered, and by releasing all constraints among the involved parameters. Under the standard model assumption of CKM unitarity, the values are found to be $|V_{tb}|\,>\,$ 0.970 and $|{\rm V}_{td}|^2$ + $|{\rm V}_{ts}|^2~<$ 0.057, both at 95% CL.

² The combination of single-top production cross-section measurements in the *t*-channel, t W, and s-channel production modes from ATLAS and CMS at $\sqrt{s} = 7$ and 8 TeV.

$|f_{LV}\sqrt{|V_{td}|^2 + |V_{ts}|^2}|$

Assumed that the top-quark-related CKM matrix elements obey the relation $|\mathsf{V}_{td}|, |\mathsf{V}_{ts}| \ll |\mathsf{V}_{tb}|$ and a form factor f_{LV} is determined for each production mode andcentre-of-mass energy.

VALUE	DOCUMENT ID	TECN	COMMENT
\bullet \bullet We do not use the follow	ving data for averages,	fits, limits,	etc. • • •
0.24 ± 0.12	¹ SIRUNYAN	20AZ CMS	t-channel single top

¹We report the square root of SIRUNYAN 20AZ result based on 35.9 fb⁻¹ of *pp* data at $\sqrt{s} = 13$ TeV measured $|V_{td}|^2 + |V_{ts}|^2 = 0.06 \pm 0.06$ using final states enriched in single top quark *t*-channel events by releasing all constraints from unitarity of the CKM matrix within the SM. Under the standard model assumption of CKM unitarity,the values are found to be $|V_{tb}| > 0.970$ and $|V_{td}|^2 + |V_{ts}|^2 < 0.057$, both at 95% CL.

Chromo-magnetic dipole moment $\mu_t = g_s \hat{\mu}_t / m_t$

VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT
• • • We do not use the	following	data for averages	s, fits, limits, e	etc. ● ● ●
$-0.024 \substack{+0.013 + 0.016 \\ -0.009 - 0.011}$		¹ SIRUNYAN	20AM CMS	$\ell+jets$
$-0.014 < \hat{\mu}_t < 0.004$	95	² SIRUNYAN	19BX CMS	$\ell\ell + \geq 2 { m j} \ (\geq 1 b)$
$-0.053 < \operatorname{Re}(\hat{\mu}_t) < 0.026$	95	³ KHACHATRY.	16AI CMS	$\ell\ell + \geq 2 { m j} \; (\geq 1 b)$

¹SIRUNYAN 20AM based on 35.9 fb⁻¹ of pp data at \sqrt{s} = 13 TeV. $t\overline{t}$ with low and high boosts are reconstructed through a fit of the kinematic distributions. The $q\bar{q}$ initial subprocess is separated using different dependencies of the distributions on the

initial states, and the linearized forward-backward asymmetry is measured to be $A_{FB}^{(1)}$ = $0.048 \substack{+0.095 + 0.020 \\ -0.087 - 0.029}$.

²SIRUNYAN 19BX based on 35.9 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. A set of parton-level normalized differential cross sections is measured to extract coefficients of the spindependent $t\bar{t}$ production density matrix. The coefficients are compared with the NLO

MC simulations and with the NLO QCD calculation including EW corrections. ³KHACHATRYAN 16AI based on 19.5 fb⁻¹ of *pp* data at $\sqrt{s} = 8$ TeV, using lepton angular distributions as a function of the $t \bar{t}$ -system kinematical variables.

Chromo-electric dipole moment $d_t = g_s \hat{d}_t / m_t$						
VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT		
• • • We do not use the	e following	g data for averages, fit	ts, limits, e	etc. • • •		
$ \hat{d}_t < 0.015$	95	¹ TUMASYAN 23		$\ell+jets$		
$-0.014 < \hat{d}_t < 0.027$	95	² TUMASYAN 23	BU CMS	dilepton channel; $\epsilon(p_t p_{\overline{t}} p_{\ell^+} p_{\ell^-})$		
$-0.019 < \hat{d}_t < 0.019$	95	² TUMASYAN 23	BU CMS	dilepton channel; $\epsilon(p_b p_{\overline{b}} p_{\ell^+} p_{\ell^-})$		
$\left \hat{d}_t \right <$ 0.03	95	³ SIRUNYAN 20	ОАМ CMS	ℓ+jets		
$-0.020 < \hat{d}_t < 0.012$	95		BX CMS	$\ell\ell + \geq 2 { m j} \; (\geq 1 b)$		
$-0.068 < lm(\hat{d}_t) < 0.067$	95	⁵ KHACHATRY16	SAI CMS	$\ell\ell + \geq 2 { m j} \; (\geq 1 b)$		

 $^1\,{\rm TUMASYAN}$ 23J based on 138 fb $^{-1}$ of $p\,p$ data at \sqrt{s} = 13 TeV. Four 7-odd triple products of momenta of the final-state particles are measured to constrain the dimensionless chromoelectric top quark dipole moment. No evidence of CP-violating effects is found, which is consistent with the SM expectation.

²TUMASYAN 23U based on 35.9 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. *CP*-odd Lorentz pseudo-scalar products $O_1 = \epsilon(p_t p_{\overline{t}} p_{\ell^+} p_{\ell^-})$ and $O_3 = \epsilon(p_b p_{\overline{b}} p_{\ell^+} p_{\ell^-})$ constructed from the momenta of t, \overline{t} , ℓ^+ , ℓ^- and of b, \overline{b} , ℓ^+ , ℓ^- , respectively, are measured and used to constrain the dimensionless chromoelectric top quark dipole moment. No evidence for CP-violating effects is found, which is consistent with the SM expectation.

³SIRUNYAN 20AM based on 35.9 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. $t\bar{t}$ with low and high boosts are reconstructed through a fit of the kinematic distributions. The $q\bar{q}$ initial subprocess is separated using different dependences of the distributions on the

initial states, and the linearized forward-backward asymmetry is measured to be $A_{FB}^{(1)}=$ $0.048 \substack{+0.095 + 0.020 \\ -0.087 - 0.029}$.

- ⁴SIRUNYAN 19BX based on 35.9 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. A set of parton-level normalized differential cross sections is measured to extract coefficients of the spindependent $t\bar{t}$ production density matrix and constrain the anomalous chromomagnetic and chromoelectric dipole moments of the top quark. The coefficients are compared with
- the NLO MC simulations and with the NLO QCD calculation including EW corrections. ⁵ KHACHATRYAN 16AI based on 19.5 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV, using lepton angular distributions as a function of the $t\bar{t}$ -system kinematical variables.

Spin Correlation in $t\overline{t}$ Production in $p\overline{p}$ Collisions

C is the correlation strength parameter, f is the ratio of events with correlated t and \overline{t} spins (SM prediction: f = 1), and κ is the spin correlation coefficient. See "The Top Quark" review for more information.

VALUE	DOCUMENT ID	TECN	COMMENT
$\bullet \bullet \bullet$ We do not use the fo	ollowing data for a	averages, fits,	limits, etc. • • •
0.89±0.22	¹ ABAZOV ² ABAZOV	16A D0	f ($\ell\ell + \geq 2$ jets, $\ell + \geq 4$ jets)
0.85 ± 0.29	² ABAZOV	12B D0	f ($\ell\ell+\geq$ 2 jets, $\ell+\geq$ 4 jets)
$1.15 \substack{+0.42 \\ -0.43}$	³ ABAZOV	12B D0	f ($\ell + ot\!$
$0.60 \substack{+ 0.50 \\ - 0.16}$	⁴ AALTONEN	11AR CDF	$\kappa \; (\ell + ot\!$
$0.74 \substack{+ 0.40 \\ - 0.41}$	⁵ ABAZOV	11AE D0	f ($\ell\ell + ot\!$
0.10 ± 0.45	⁶ ABAZOV	11AF D0	C ($\ell\ell + \not\!$

¹ABAZOV 16A based on 9.7 fb⁻¹ of data. A matrix element method is used. It corresponds to evidence of spin correlation at 4.2 σ and is in agreement with the NLO SM prediction $0.80^{+0.01}_{-0.02}$

- ² This is a combination of the lepton + jets analysis presented in ABAZOV 12B and the dilepton measurement of ABAZOV 11AE. It provides a 3.1 σ evidence for the $t\bar{t}$ spin correlation.
- 3 Based on 5.3 fb $^{-1}$ of data. The error is statistical and systematic combined. A matrix element method is used.
- ⁴Based on 4.3 fb⁻¹ of data. The measurement is based on the angular study of the top quark decay products in the helicity basis. The theory prediction is $\kappa \approx 0.40$.
- 5 Based on 5.4 fb $^{-1}$ of data using a matrix element method. The error is statistical and systematic combined. The no-correlation hypothesis is excluded at the 97.7% CL.
- $^6\,\text{Based}$ on 5.4 fb $^{-1}$ of data. The error is statistical and systematic combined. The NLO QCD prediction is C = 0.78 \pm 0.03. The neutrino weighting method is used for reconstruction of kinematics.

Spin Correlation in $t\bar{t}$ Production in pp Collisions

Spin correlation, ${\rm f}_{SM}$, measures the strength of the correlation between the spins of the pair produced $t\overline{t}$. $f_{SM} = 1$ for the SM, while $f_{SM} = 0$ for no spin correlation. VALUE TECN COMMENT DOCUMENT ID • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ SIRUNYAN 19BX CMS C_{kk} in $\ell\ell + \geq 2j$ ($\geq 1b$) $0.90 \pm 0.07 \pm 0.09 \pm 0.01$ $1.13 \pm 0.32 \pm 0.32 {+0.10 \atop -0.13}$ ¹ SIRUNYAN C_{rr} in $\ell\ell + \geq 2j$ ($\geq 1b$) 19BX CMS $\begin{array}{l} \mathsf{C}_{nn} \text{ in } \ell\ell + \\ \mathsf{C}_{rk} + \mathsf{C}_{kr} \text{ in } \ell\ell + \\ (\geq 1b) \end{array} (\geq 1b) \\ \end{array}$ ¹ SIRUNYAN $1.01\!\pm\!0.04\!\pm\!0.05\!\pm\!0.01$ 19BX CMS ¹ SIRUNYAN $0.94 \pm 0.17 \pm 0.26 \pm 0.01$ 19BX CMS $\begin{array}{c} (C_{kk}+C_{rr}+C_{nn})/3 \text{ in } \ell\ell \\ + \geq 2 \mathrm{j} \ (\geq 1b) \end{array}$ ¹ SIRUNYAN $0.98\!\pm\!0.03\!\pm\!0.04\!\pm\!0.01$ 19BX CMS $A^{lab}_{cos\phi}$ in $\ell\ell+\geq 2$ j ($\geq 1b$) $0.74 \pm 0.07 \pm 0.19 ^{+0.06}_{-0.08}$ ¹ SIRUNYAN 19BX CMS $1.05 \pm 0.03 \pm 0.08 \stackrel{+0.09}{-0.12}$ ¹ SIRUNYAN $egin{array}{lll} A_{ig|\Delta\phi(\ell\ell)ig|} & {
m in} \ \ell\ell + \ \geq 2{
m j} \ (\geq 1b) \end{array}$ 19BX CMS $1.12^{+0.12}_{-0.15}$ ² KHACHATRY...16AL CMS $\ell\ell + \geq 2j \ (\geq 1b)$ $0.72 {\pm} 0.08 {+} 0.15 {-} 0.13$ ³ KHACHATRY...16X CMS μ + 4,5j ⁴ AAD 15J ATLS $\Delta \phi(\ell \ell)$ in $\ell \ell + \geq 2j(\geq 1b)$ $1.20\!\pm\!0.05\!\pm\!0.13$ ⁵ AAD 14BB ATLS $\Delta \phi(\ell \ell)$ in $\ell \ell + \geq 2j$ events $1.19\!\pm\!0.09\!\pm\!0.18$ ⁵ AAD 14BB ATLS $\Delta \phi(\ell j)$ in $\ell + \geq 4j$ events $1.12 \pm 0.11 \pm 0.22$ ^{5,6} AAD $0.87 \pm 0.11 \pm 0.14$ 14bb ATLS S-ratio in $\ell\ell + \geq 2j$ events ^{5,7} AAD 14bb ATLS $\cos\theta(\ell^+)\cos\theta(\ell^-)$ in $\ell\ell$ + $0.75 \!\pm\! 0.19 \!\pm\! 0.23$ \geq 2j events ^{5,8} AAD $\cos\theta(\ell^+)\cos\theta(\ell^-)$ in $\ell\ell + \geq 2j$ events 14BB ATLS $0.83 \!\pm\! 0.14 \!\pm\! 0.18$

¹SIRUNYAN 19BX based on 35.9 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. A set of partonlevel normalized differential cross sections sensitive to coefficients of the spin-dependent $t\bar{t}$ production density matrix is measured. The distributions and coefficients are compared with the NLO MC simulations and with the NLO QCD calculation including EW corrections. Three errors are from statistics, experimental systematics, and theory.

²KHACHATRYAN 16AI based on 19.5 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV, using lepton angular distributions as a function of the $t\bar{t}$ -system kinematical variables.

³KHACHATRYAN 16X based on 19.7 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Uses a template fit method. Spin correlation strength in the helicity basis is given by $A_{hel} = 0.23 \pm 0.03^{+0.05}_{-0.04}$.

⁴AAD 15J based on 20.3 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Uses a fit including a linear superposition of $\Delta \phi$ distribution from the SM NLO simulation with coefficient f_{SM} and from $t \bar{t}$ simulation without spin correlation with coefficient $(1 - f_{SM})$.

⁵ Based on 4.6 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. The results are for $m_t = 172.5$ GeV.

⁶ The S-ratio is defined as the SM spin correlation in the like-helicity gluon-gluon collisions normalized to the no spin correlation case; see eq.(6) for the LO expression.

⁷ The polar angle correlation along the helicity axis.

 8 The polar angle correlation along the direction which maximizes the correlation.

t-quark FCNC Couplings κ^{utg}/Λ and κ^{ctg}/Λ

VALUE (TeV $^{-1}$)	CL%	DOCUMENT ID		TECN	COMMENT	
\bullet \bullet \bullet We do not use the	following	data for averages	, fits,	limits, e	tc. ● ● ●	
		¹ AAD	22T	ATLS	ug ightarrow t , $cg ightarrow t$	
<0.0041	95	² KHACHATRY	. 17 G	CMS	$ \kappa^{tug} /\Lambda$	
<0.018	95	² KHACHATRY	. 17 G	CMS	$ \kappa^{tcg} /\Lambda$	
<0.010	95	³ AAD	16AS	ATLS	κ^{tug}/Λ	
<0.023	95	³ AAD	16AS	ATLS	κ^{tcg}/Λ	
<0.0069	95	⁴ AAD	12BP	ATLS	$t^{tug}/\Lambda~(t^{tcg}=0)$	
<0.016	95	⁴ AAD	12BP	ATLS	$t^{tcg}/\Lambda~(t^{tug}=0)$	
<0.013		⁵ ABAZOV	10ĸ	D0	κ^{tug}/Λ	
<0.057	95	⁵ ABAZOV	10ĸ	D0	κ^{tcg}/Λ	
<0.018	95	⁶ AALTONEN	09N	CDF	$\kappa^{tug}/\Lambda~(\kappa^{tcg}=0)$	
<0.069	95	⁶ AALTONEN	09N	CDF	$\kappa^{tcg}/\Lambda~(\kappa^{tug}=0)$	
<0.037	95	⁷ ABAZOV	07V	D0	κ^{utg}/Λ	
<0.15	95	⁷ ABAZOV	07V	D0	κ^{ctg}/Λ	
-	-					-

¹AAD 22T based on 139 fb⁻¹ of pp data at \sqrt{s} = 13 TeV. The results are obtained from the 95% CL upper limits on the single top-quark productions $\sigma(ug \rightarrow t) \cdot B(t \rightarrow bW) \cdot B(W \rightarrow \ell\nu) < 3.0 \text{ pb and } \sigma(cg \rightarrow t) \cdot B(t \rightarrow bW) \cdot B(W \rightarrow \ell\nu) < 4.7 \text{ pb.}$ These are interpreted as limits on couplings in an EFT $|C_{uG}^{ut}|/\Lambda^2 < 0.057 \text{ TeV}^{-2}$ and $|C_{uG}^{ct}|/\Lambda^2 < 0.14 \text{ TeV}^{-2}$. The results also correspond to $B(t \rightarrow ug) < 6.1 \times 10^{-5}$ and B($t \rightarrow cg$) < 3.7 × 10⁻⁴.

² KHACHATRYAN 17G based on 5.0 and 19.7 fb⁻¹ of pp data at $\sqrt{s} = 7$ and 8 TeV, respectively. *t*-channel single top production is used. The result corresponds to B($t \rightarrow ug$) < 2.0×10^{-5} or B($t \rightarrow cg$) < 4.1×10^{-4} .

³AAD 16AS based on 20.3 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. The results are obtained from the 95% CL upper limit on the single top-quark production $\sigma(qg \rightarrow t) \cdot B(t \rightarrow t) \cdot B(t)$ bW)B($W \rightarrow I\nu$) < 2.9 pb, B($t \rightarrow ug$) < 4.0×10⁻⁵ and B($t \rightarrow cg$) < 20×10⁻⁵.

⁴Based on 2.05 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. The results are obtained from the 95% CL upper limit on the single top-quark production $\sigma(qg \rightarrow t) \cdot B(t \rightarrow bW) < 3.9 \text{ pb}$, for q=u or q=c, $B(t \rightarrow ug) < 5.7 \times 10^{-5}$ and $B(t \rightarrow ug) < 2.7 \times 10^{-4}$.

- ⁵ Based on 2.3 fb⁻¹ of data in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV. Upper limit of single top quark production cross section 0.20 pb and 0.27 pb via FCNC t-u-g and t-c-g couplings,
- quark production cross section 0.20 pb and 0.27 pb via FCNC *t-u-g* and *t-c-g* couplings, respectively, lead to the bounds without assuming the absence of the other coupling. $B(t \rightarrow u + g) < 2.0 \times 10^{-4}$ and $B(t \rightarrow c + g) < 3.9 \times 10^{-3}$ follow. ⁶ Based on 2.2 fb⁻¹ of data in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV. Upper limit of single top quark production cross section $\sigma(u(c) + g \rightarrow t) < 1.8$ pb (95% CL) via FCNC *t-u-g* and *t-c-g* couplings lead to the bounds. $B(t \rightarrow u + g) < 3.9 \times 10^{-4}$ and $B(t \rightarrow c + g) < 1.00 \text{ m}$ $g) < 5.7 \times 10^{-3}$ follow.
- ⁷Result is based on 230 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. Absence of single top quark production events via FCNC t-u-g and t-c-g couplings lead to the upper bounds on the dimensioned couplings, κ^{utg}/Λ and κ^{ctg}/Λ , respectively.

t-Quark Yukawa Coupling from $t\bar{t}$ Kinematic Distributions in pp Collisions

The ratio of t-quark Yukawa coupling to its standard model predicted value.VALUEDOCUMENT IDTECNCOMMENT

ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$					
$1.16 \substack{+0.24 \\ -0.35}$	¹ SIRUNYAN	20вн CMS	$\ell\ell~(\ell{=}e{,}\mu)+{ m jets}~(\geq 2b{ m j})+ ot\!$		
$1.07 \substack{+0.34 \\ -0.43}$	² SIRUNYAN	19BY CMS	ℓ +jets, $t \overline{t}$ threshold		

¹ SIRUNYAN 20BH based on 137 fb⁻¹ of data at $\sqrt{s} = 13$ TeV. Kinematic distributions of $t\bar{t}$ are compared with predictions by different values of the top Yukawa coupling in loop corrections, where the scaling of the SM coupling is used within the κ -framework. The \mathbb{E}_T cut applies only to the same-flavor dilepton, not $e\mu$ events.

² SIRUNYAN 19BY based on 35.8 fb⁻¹ of data at $\sqrt{s} = 13$ TeV. Experimental sensitivity is enhanced in the low $M_{t\bar{t}}$ region. The distributions of $M_{t\bar{t}}$, $|y_t - y_{\bar{t}}|$, and the number of reconstructed jets are compared with predictions by different Yukawa couplings which include NNLO QCD and NLO EW corrections.

$\sigma(Ht\overline{t}) / \sigma(Ht\overline{t})_{SM}$

VALUE	<u>CL%</u>	<u>DOCUMENT ID</u>		TECN	<u>COMMENT</u>
• • • We do not use the	following	data for averages	, fits,	limits, e	tc. • • •
$1.43^{+0.33+0.21}_{-0.31-0.15}$		¹ AAD	20z	ATLS	$Ht\overline{t}$ $(H ightarrow \gamma \gamma)$
$1.38 \substack{+0.29 + 0.21 \\ -0.27 - 0.11}$		² SIRUNYAN	20AS	CMS	$Ht\overline{t}$ ($H \rightarrow \gamma\gamma$)
$0.72\!\pm\!0.24\!\pm\!0.38$		³ SIRUNYAN	19R	CMS	$\begin{array}{ll} Ht\overline{t} (H \rightarrow b\overline{b}, t\overline{t} \rightarrow \\ \ell + \text{jets or dilepton}) \end{array}$
$0.9\ \pm 0.7\ \pm 1.3$		⁴ SIRUNYAN	18bd	CMS	$\begin{array}{c} t + jets \text{ of } dilepton \\ H t \overline{t} (H \rightarrow b \overline{b}, t \overline{t} \rightarrow all jets) \end{array}$
$1.26^{+0.31}_{-0.26}$		⁵ SIRUNYAN	18L	CMS	combination of CMS
<6.7 2.8 ±1.0	95	⁶ AAD ⁷ KHACHATRY	15 .14н	ATLS CMS	$\begin{array}{l} Ht\overline{t}; \ H \to \ \gamma\gamma \\ H \to \ b\overline{b}, \ \tau_h \tau_h, \ \gamma\gamma, \\ W W / Z Z (\text{leptons}) \end{array}$

¹ AAD 20Z based on 139 fb⁻¹ of *pp* data at 13 TeV. Assuming a *CP*-even coupling the $t\overline{t}H$ process is observed with a significance of 5.2 σ , and the measured $\sigma_{t\overline{t}H} \cdot B_{\gamma\gamma} = 1.64^{+0.38}_{-0.36} + 0.17_{-0.14}$ fb. A *CP*-mixing angle $|\alpha| > 43^{\circ}$ is excluded at 95% CL.

² SIRUNYAN 20AS based on 137 fb⁻¹ of pp data at 13 TeV. The $t\bar{t}H$ process is observed with a significance of 6.6 σ , and the measured $\sigma_{t\bar{t}H} \cdot B_{\gamma\gamma} = 1.56 \substack{+0.33 + 0.09 \\ -0.30 - 0.08}$ fb. The fractional contribution of the *CP*-odd component is measured to be $f_{CP}^{t\bar{t}H} = 0.00 \pm 0.33$.

- ³SIRUNYAN 19R based on 35.9 fb⁻¹ of pp data at 13 TeV. Multivariate techniques are employed to separate the signal from the dominant $t\bar{t}$ +jets background. The result is for $m_{H} = 125$ GeV. The measured ratio corresponds to a signal significance of 1.6σ above the background-only hypothesis.
- ⁴SIRUNYAN 18BD based on 35.9 fb⁻¹ of pp data at 13 TeV. A combined fit of signal and background templates to data is performed in six event categories separated by jet and *b*-jet multiplicities. An upper limit of 3.8 is obtained for the cross section ratio.
- ⁵ SIRUNYAN 18L based on up to 5.1, 19.7, and 35.9 fb⁻¹ of pp data at 7, 8, and 13 TeV, respectively. An excess of events is observed, with a significance of 5.2 standard deviations, over the expectation from the background-only hypothesis. The result is for the Higgs boson mass of 125.09 GeV.
- ⁶Based on 4.5 fb⁻¹ of data at 7 TeV and 20.3 fb⁻¹ at 8 TeV. The result is for $m_H = 125.4$ GeV. The measurement constrains the top quark Yukawa coupling strength parameter $\kappa_t = Y_t / Y_t^{SM}$ to be $-1.3 < \kappa_t < 8.0$ (95% CL).

⁷ Based on 5.1 fb⁻¹ of *pp* data at 7 TeV and 19.7 fb⁻¹ at 8 TeV. The results are obtained by assuming the SM decay branching fractions for the Higgs boson of mass 125.6 GeV. The signal strength for individual Higgs decay channels are given in Fig. 13, and the preferred region in the (κ_V , κ_f) space is given in Fig. 14.

Single *t*-Quark Production Cross Section in $p\overline{p}$ Collisions at $\sqrt{s} = 1.8$ TeV

•			•	•	hysics at $\sqrt{s} = 1.8$ TeV.
VALUE (pb)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not	t use the fo	llowing data for a	erages,	fits, lir	nits, etc. • • •
<24	95	¹ ACOSTA	04H	CDF	$p \overline{p} ightarrow t b + X$, $t q b + X$
<18	95	² ACOSTA	02	CDF	$p \overline{p} \rightarrow t b + X$
<13	95	³ ACOSTA	02	CDF	$p\overline{p} ightarrow tqb + X$

¹ ACOSTA 04H bounds single top-quark production from the *s*-channel *W*-exchange process, $q'\overline{q} \rightarrow t\overline{b}$, and the *t*-channel *W*-exchange process, $q'g \rightarrow qt\overline{b}$. Based on $\sim 106 \text{ pb}^{-1}$ of data.

²ACOSTA 02 bounds the cross section for single top-quark production via the s-channel W-exchange process, $q' \overline{q} \rightarrow t \overline{b}$. Based on $\sim 106 \text{ pb}^{-1}$ of data.

³ACOSTA 02 bounds the cross section for single top-quark production via the *t*-channel *W*-exchange process, $q'g \rightarrow qt\overline{b}$. Based on $\sim 106 \text{ pb}^{-1}$ of data.

Single *t*-Quark Production Cross Section in $p\overline{p}$ Collisions at $\sqrt{s} = 1.96$ TeV

Direct pro	bes of the <i>t b W</i>	<pre>/ coupling and possil</pre>	ble new ph	ysics at $\sqrt{s} = 1.96$ TeV.
OUR AVE	RAGE assumes	that the systematic	uncertaint	ies are uncorrelated.
	61.0/		TECH	COLUMENT

VALUE (pb)	CL% DOCUMENT ID		TECN	COMMENT
$\bullet \bullet \bullet$ We do not use	the following data for aver	rages, fi	ts, limi	ts, etc. ● ● ●
$3.53^{+1.25}_{-1.16}$	¹ AALTONEN	16 (CDF	s - $+$ t -channels (0 ℓ + $ ot\!$
$2.25 \substack{+0.29 \\ -0.31}$	² AALTONEN	15H ⁻	TEVA	t-channel
$3.30^{+0.52}_{-0.40}$	^{2,3} AALTONEN	15H ⁻	TEVA	s- + t-channels
$1.12\substack{+0.61 \\ -0.57}$	⁴ AALTONEN	14K (CDF	s-channel $(0\ell + ot\!$
$1.41 \substack{+0.44 \\ -0.42}$	⁵ AALTONEN	14L (CDF	s-channel ($\ell{+}{ ot\!\! E}_T{+}$ 2j (\geq 1 b -tag))
$1.29^{+0.26}_{-0.24}$	⁶ AALTONEN	14M ⁻	TEVA	<i>s</i> -channel (CDF + D0)
$3.04^{+0.57}_{-0.53}$	⁷ AALTONEN	140 (CDF	$s + t + Wt (\ell + \not\!\!E_T + 2$ or 3 jets ($\geq 1b$ -tag))
$1.10\substack{+0.33 \\ -0.31}$	⁸ ABAZOV	130 I	D0	s-channel
$3.07 \substack{+0.54 \\ -0.49}$	⁸ ABAZOV	130 I	D0	t-channel
$4.11\substack{+0.60\\-0.55}$	⁸ ABAZOV	130 I	D0	s- + t-channels
0.98 ± 0.63	⁹ ABAZOV	11AA [D0	<i>s</i> -channel
2.90 ± 0.59	⁹ ABAZOV	11AA [D0	<i>t</i> -channel
$3.43 \substack{+0.73 \\ -0.74}$	¹⁰ ABAZOV	11AD [D0	<i>s</i> - + <i>t</i> -channels
$1.8\begin{array}{c}+0.7\\-0.5\end{array}$	¹¹ AALTONEN	10ab (CDF	<i>s</i> -channel

https://pdg.lbl.gov

Created: 7/25/2024 17:21

0.8 ±0.4		¹¹ AALTONEN	10AB CDF	<i>t</i> -channel
$4.9 \ +2.5 \ -2.2$		¹² AALTONEN	100 CDF	$ ot\!$
$3.14 \substack{+0.94 \\ -0.80}$		¹³ ABAZOV	10 D0	<i>t</i> -channel
1.05 ± 0.81		¹³ ABAZOV	10 D0	<i>s</i> -channel
< 7.3	95	¹⁴ ABAZOV	10J D0	$ au+{\sf jets}$ decay
$2.3 \begin{array}{c} +0.6 \\ -0.5 \end{array}$		¹⁵ AALTONEN	09AT CDF	<i>s</i> - + <i>t</i> -channel
3.94±0.88		¹⁶ ABAZOV	09z D0	<i>s</i> - + <i>t</i> -channel
$2.2 \ +0.7 \ -0.6$		¹⁷ AALTONEN	08AH CDF	<i>s</i> - + <i>t</i> -channel
$4.7 \hspace{0.1in} \pm 1.3$		¹⁸ ABAZOV	081 D0	<i>s</i> - + <i>t</i> -channel
$4.9 \hspace{0.2cm} \pm 1.4$		¹⁹ ABAZOV	07H D0	<i>s</i> - + <i>t</i> -channel
< 6.4	95	²⁰ ABAZOV	05P D0	$p \overline{p} \rightarrow t b + X$
< 5.0	95	²⁰ ABAZOV	05P D0	$p \overline{p} \rightarrow t q b + X$
<10.1	95	²¹ ACOSTA	05N CDF	$p \overline{p} ightarrow t q b + X$
<13.6	95	²¹ ACOSTA	05N CDF	$p \overline{p} \rightarrow t b + X$
<17.8	95	²¹ ACOSTA	05N CDF	$p \overline{p} \rightarrow t b + X, t q b +$

¹AALTONEN 16 based on 9.5 fb⁻¹ of data. This includes, as a part, the result of AALTONEN 14K. Combination of this result with that of AALTONEN 140 gives a s + t cross section of $3.02^{+0.49}_{-0.48}$ pb and $|V_{tb}| > 0.84$ (95% CL).

²AALTONEN 15H based on 9.7 fb⁻¹ of data per experiment. The result is for $m_t = 172.5$ GeV, and is a combination of the CDF measurements (AALTONEN 16) and the D0 measurements (ABAZOV 130) on the *t*-channel single *t*-quark production cross section. The result is consistent with the NLO+NNLL SM prediction and gives $|V_{tb}| = 1.02^{+0.06}_{-0.05}$ and $|V_{tb}| > 0.92$ (95% CL).

³AALTONEN 15H is a combined measurement of *s*-channel single top cross section by CDF + D0. AALTONEN 14M is not included.

- ⁴Based on 9.45 fb⁻¹ of data, using neural networks to separate signal from backgrounds. The result is for $m_t = 172.5$ GeV. Combination of this result with the CDF measurement in the 1 lepton channel AALTONEN 14L gives $1.36 \substack{+0.37 \\ -0.32}$ pb, consistent with the SM prediction, and is 4.2 sigma away from the background only hypothesis.
- ⁵ Based on 9.4 fb⁻¹ of data, using neural networks to separate signal from backgrounds. The result is for $m_t = 172.5$ GeV. The result is 3.8 sigma away from the background only hypothesis.
- ⁶ Based on 9.7 fb⁻¹ of data per experiment. The result is for $m_t = 172.5$ GeV, and is a combination of the CDF measurements AALTONEN 14L, AALTONEN 14K and the D0 measurement ABAZOV 130 on the *s*-channel single *t*-quark production cross section. The result is consistent with the SM prediction of 1.05 ± 0.06 pb and the significance _ of the observation is of 6.3 standard deviations.
- ⁷ Based on 7.5 fb⁻¹ of data. Neural network is used to discriminate signals (s-, t- and Wt-channel single top production) from backgrounds. The result is consistent with the SM prediction, and gives $|V_{tb}| = 0.95 \pm 0.09(\text{stat} + \text{syst}) \pm 0.05(\text{theory})$ and $|V_{tb}| > 0.78$ (95% CL). The result is for $m_t = 172.5$ GeV.
- ⁸ Based on 9.7 fb⁻¹ of data. Events with $\ell + \not\!\!E_T + 2$ or 3 jets (1 or 2 *b*-tag) are analysed, assuming $m_t = 172.5$ GeV. The combined s- + t-channel cross section gives $|V_{tb} f_1^L| = 1.12^{+0.09}_{-0.08}$, or $|V_{tb}| > 0.92$ at 95% CL for $f_1^L = 1$ and a flat prior within $0 \le |V_{tb}|^2 \le 1$.
- 9 Based on 5.4 fb $^{-1}$ of data. The error is statistical + systematic combined. The results are for m_t = 172.5 GeV. Results for other m_t values are given in Table 2 of ABAZOV 11AA.

https://pdg.lbl.gov

Х

- 10 Based on 5.4 fb⁻¹ of data and for $m_t = 172.5$ GeV. The error is statistical + systematic combined. Results for other m_t values are given in Table III of ABAZOV 11AD. The result is obtained by assuming the SM ratio between tb (s-channel) and tqb (t-channel) productions, and gives $|\mathsf{V}_{tb}\ f_1^L| = 1.02\substack{+0.10\\-0.11}$, or $|\mathsf{V}_{tb}| > 0.79$ at 95% CL for a flat prior within 0 < $|\mathsf{V}_{tb}|^2 < 1$.
- ¹¹Based on 3.2 fb⁻¹ of data. For combined s- + t-channel result see AALTONEN 09AT.
- 12 Result is based on 2.1 fb $^{-1}$ of data. Events with large missing E_T and jets with at least one *b*-jet without identified electron or muon are selected. Result is obtained when observed 2.1 σ excess over the background originates from the signal for $m_t = 175$ GeV, giving $\left| V_{tb} \right| = 1.24 \substack{+0.34 \\ -0.29} \pm 0.07 (\text{theory}).$
- ¹³ Result is based on 2.3 fb⁻¹ of data. Events with isolated $\ell + \not\!\!E_T + 2$,3, 4 jets with one or two *b*-tags are selected. The analysis assumes $m_t = 170$ GeV.
- ¹⁴ Result is based on 4.8 fb⁻¹ of data. Events with an isolated reconstructed tau lepton, missing E_T + 2, 3 jets with one or two *b*-tags are selected. When combined with ABAZOV 09Z result for *e* + μ channels, the *s* and *t*-channels combined cross section is $3.84^{+0.89}_{-0.83}$ pb.
- ¹⁵ Based on 3.2 fb⁻¹ of data. Events with isolated $\ell + \not\!\!E_T$ + jets with at least one *b*-tag are analyzed and *s*- and *t*-channel single top events are selected by using the likelihood function, matrix element, neural-network, boosted decision tree, likelihood function optimized for *s*-channel process, and neural-networked based analysis of events with $\not\!\!E_T$ that has sensitivity for $W \to \tau \nu$ decays. The result is for $m_t = 175$ GeV, and the mean value decreases by 0.02 pb/GeV for smaller m_t . The signal has 5.0 sigma significance. The result gives $|V_{tb}| = 0.91 \pm 0.11$ (stat+syst) ± 0.07 (theory), or $|V_{tb}| > 0.71$ at 95% CL.
- 16 Based on 2.3 fb $^{-1}$ of data. Events with isolated $\ell+\not\!\!\!E_T+\geq 2$ jets with 1 or 2 b-tags are analyzed and s- and t-channel single top events are selected by using boosted decision tree, Bayesian neural networks and the matrix element method. The signal has 5.0 sigma significance. The result gives $|V_{tb}|=1.07\pm0.12$, or $|V_{tb}|>0.78$ at 95% CL. The analysis assumes $m_t=170~{\rm GeV}$.
- ¹⁷ Result is based on 2.2 fb⁻¹ of data. Events with isolated $\ell + \not\!\!E_T + 2$, 3 jets with at least one *b*-tag are selected, and *s* and *t*-channel single top events are selected by using likelihood, matrix element, and neural network discriminants. The result can be interpreted as $|V_{tb}| = 0.88 \substack{+0.13 \\ -0.12}$ (stat + syst) ± 0.07 (theory), and $|V_{tb}| > 0.66$ (95% CL) under the $|V_{tb}| < 1$ constraint.
- ¹⁸ Result is based on 0.9 fb⁻¹ of data. Events with isolated $\ell + \not\!\!E_T + 2$, 3, 4 jets with one or two *b*-vertex-tag are selected, and contributions from W + jets, $t\bar{t}$, *s* and *t*-channel single top events are identified by using boosted decision trees, Bayesian neural networks, and matrix element analysis. The result can be interpreted as the measurement of the CKM matrix element $|V_{tb}| = 1.31^{+0.25}_{-0.21}$, or $|V_{tb}| > 0.68$ (95% CL) under the

$$|V_{tb}| < 1$$
 constraint.

- 19 Result is based on 0.9 fb $^{-1}$ of data. This result constrains V_{tb} to 0.68 < $|V_{tb}|~\leq~1$ $_{20}$ at 95% CL.
- ²⁰ ABAZOV 05P bounds single top-quark production from either the *s*-channel *W*-exchange process, $q'\overline{q} \rightarrow t\overline{b}$, or the *t*-channel *W*-exchange process, $q'g \rightarrow qt\overline{b}$, based on $\sim 230 \text{ pb}^{-1}$ of data.
- ²¹ ACOSTA 05N bounds single top-quark production from the *t*-channel *W*-exchange process $(q'g \rightarrow qt\overline{b})$, the *s*-channel *W*-exchange process $(q'\overline{q} \rightarrow t\overline{b})$, and from the combined cross section of *t* and *s*-channel. Based on ~ 162 pb⁻¹ of data.

t-channel Single t Production Cross Section in pp Collisions at $\sqrt{s} = 7$ TeV

Direct probe of the t b W coupling and possible new physics at $\sqrt{s} = 7$ TeV. TECN

VALUE (pb)	DOCUMENTID	TECN	COMMENT
$\bullet \bullet \bullet$ We do not use the fo	llowing data for a	verages, fits, l	limits, etc. • • •
67.5± 5.7	¹ AABOUD	19R LHC	combination of ATLAS+CMS
$68 \pm 2 \pm 8$	² AAD	14bi ATLS	$\ell + ot\!$
83 \pm 4 $\substack{+20\\-19}$	³ AAD	12сн ATLS	<i>t</i> -channel ℓ + $ ot\!$
67.2± 6.1	⁴ CHATRCHYAN		<i>t</i> -channel $\ell + ot\!$
$83.6 \pm 29.8 \pm$ 3.3	⁵ CHATRCHYAN	V11R CMS	<i>t</i> -channel

 1 AABOUD 19R based on 1.17 to 5.1 fb $^{-1}$ of data from ATLAS and CMS at 7 TeV. 2 Based on 4.59 fb $^{-1}$ of data, using neural networks for signal and background separation.

 $\sigma(tq) = 46 \pm 1 \pm 6$ pb and $\sigma(\overline{tq}) = 23 \pm 1 \pm 3$ pb are separately measured, as well as their ratio $R = \sigma(tq)/\sigma(\bar{t}q) = 2.04 \pm 0.13 \pm 0.12$. The results are for $m_t = 172.5$ GeV, and those for other m_t values are given by eq.(4) and Table IV. The measurements give $|V_{tb}| = 1.02 \pm 0.07$ or $|V_{tb}| > 0.88$ (95% CL).

 3 Based on 1.04 fb $^{-1}$ of data. The result gives $|V_{tb}|$ = $1.13^{+0.14}_{-0.13}$ from the ratio $\sigma(\exp)/\sigma(ext{th}),$ where $\sigma(ext{th})$ is the SM prediction for $\left|\mathsf{V}_{tb}
ight|$ = 1. The 95% CL lower bound of $|V_{tb}|$ > 0.75 is found if $|V_{tb}|$ < 1 is assumed. $\sigma(t)$ = 59 $^{+18}_{-16}$ pb and $\sigma(\overline{t}) = 33^{+13}_{-12}$ pb are found for the separate single t and \overline{t} production cross sections, respectively. The results assume $m_t = 172.5$ GeV for the acceptance.

⁴ Based on 1.17 fb⁻¹ of data for $\ell = \mu$, 1.56 fb⁻¹ of data for $\ell = e$ at 7 TeV collected during 2011. The result gives $|V_{tb}| = 1.020 \pm 0.046$ (meas) ± 0.017 (th). The 95% CL lower bound of $|V_{tb}|$ > 0.92 is found if $|V_{tb}|$ < 1 is assumed. The results assume m_t = 172.5 GeV for the acceptance.

 5 Based on 36 pb $^{-1}$ of data. The first error is statistical + systematic combined, the second is luminosity. The result gives $|V_{tb}|$ = 1.114 \pm 0.22(exp) \pm 0.02(th) from the ratio $\sigma(\exp)/\sigma(th)$, where $\sigma(th)$ is the SM prediction for $|V_{tb}| = 1$. The 95% CL lower bound of $|{\sf V}_{tb}|~>$ 0.62 (0.68) is found from the 2D (BDT) analysis under the constraint $0 < |V_{tb}|^2 < 1.$

t-channel Single t Production Cross Section in pp Collisions at $\sqrt{s} = 8$ TeV

\bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet	
1 AABOUD 19R LHC combination of ATLA	AS+CMS
89.6 $^{+7.1}_{-6.3}$ ² AABOUD 17T ATLS $\ell + \not\!\!\! E_T + 2 j (1b j)$	
83.6 \pm 2.3 \pm 7.4 ³ KHACHATRY14F CMS $\ell+\not\!\!E_T+\geq$ 2 j (1,2 b	o, 1 forward j)

 1 AABOUD 19R based on 12.2 to 20.3 $\rm fb^{-1}$ of data from ATLAS and CMS at 8 TeV. 2 AABOUD 17T based on 20.2 $\rm fb^{-1}$ of data. A maximum-likelihood fit to neural-network discriminant distributions is used to separate signal and background events. Individual cross sections are measured as $\sigma(tq) = 56.7 \substack{+4.3 \\ -3.8}$ pb and $\sigma(\overline{t}q) = 32.9 \substack{+3.0 \\ -2.7}$ pb, while their ratio is given by $\sigma(tq)/\sigma(\overline{t}q)=1.72\pm0.09.$ A lower limit $\left|V_{tb}\right|~>0.92$ (95% CL) is obtained. Measured total and differential cross sections are described well by the SM.

³Based on 19.7 fb⁻¹ of data. The t and \overline{t} production cross sections are measured separately as $\sigma_{t-ch.}(t) = 53.8 \pm 1.5 \pm 4.4$ pb and $\sigma_{t-ch.}(\overline{t}) = 27.6 \pm 1.3 \pm 3.7$ pb, respectively, as well as their ratio $R_{t-ch} = \sigma_{t-ch.}(t)/\sigma_{t-ch.}(\overline{t}) = 1.95 \pm 0.10 \pm 0.19$, in agreement with the SM predictions. Combination with a previous CMS result at \sqrt{s} = 7 TeV [CHATRCHYAN 12BQ] gives $|V_{tb}| = 0.998 \pm 0.038 \pm 0.016$. Also obtained is the ratio $R_{8/7} = \sigma_{t-ch.} (8 \text{TeV}) / \sigma_{t-ch.} (7 \text{TeV}) = 1.24 \pm 0.08 \pm 0.12$.

s-channel Single t Production Cross Section in pp Collisions at $\sqrt{s} = 8$ TeV							
VALUE (pb)	DOCUMENT ID		TECN	COMMENT			
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •			
4.9 ± 1.4	¹ AABOUD	19R	LHC	ATLAS + CMS			
$4.8\!\pm\!0.8\!+\!1.6\\-1.3$	² AAD	16 ∪	ATLS	$\ell + \not\!\! E_T + 2b$			
13.4 ± 7.3	³ KHACHATRY.						
5.0±4.3	⁴ AAD	15A	ATLS	$\ell + E_T + 2b$			
	-						

 1_2 AABOUD 19R based on 12.2 to 20.3 fb⁻¹ of data from ATLAS and CMS at 8 TeV. 2_2 AAD 16U based on 20.3 fb⁻¹ of data, using a maximum-likelihood fit of a matrix element method discriminant. The same data set as in AAD 15A is used. The result corresponds to an observed significance of 3.2σ .

- ³KHACHATRYAN 16AZ based on 19.7 fb⁻¹ of data, using a multivariate analysis to separate signal and backgrounds. The same method is applied to 5.1 fb⁻¹ of data at $\sqrt{s} = 7$ TeV, giving 7.1 \pm 8.1 pb. Combining both measurements, the observed significance is 2.5 σ . A best fit value of 2.0 \pm 0.9 is obtained for the combined ratio of the measured values and SM expectations. ⁴AAD 15A based on 20.3 fb⁻¹ of data, using a multivariate analysis to separate signal
- ⁴ AAD 15A based on 20.3 fb⁻¹ of data, using a multivariate analysis to separate signal and backgrounds. The 95% CL upper bound of the cross section is 14.6 pb. The results are consistent with the SM prediction of 5.61 ± 0.22 pb at approximate NNLO.

t-channel Single t Produc	tion Cross Section in	pp Collisions at 🗤	$\sqrt{s} = 13 \mathrm{TeV}$
---------------------------	-----------------------	--------------------	------------------------------

				•••
VALUE (pb)	DOCUMENT IL)	TECN	COMMENT
• • • We do not use the	following data	for ave	erages,	fits, limits, etc. • • •
$130\pm$ 1 ±19		20 D	CMS	$\sigma(t q), \ \ell + ot\!$
$77\pm$ 1 \pm 12	¹ SIRUNYAN	20 D	CMS	$\sigma(\overline{t} q), \ \ell + \not\!\!\! E_T + \geq 2 \ j$
$156\pm~5{\pm}27{\pm}~3$	² AABOUD	17H	ATLS	$\sigma(tq), \ \ell + \not\!$
$91\pm$ $4\pm18\pm$ 2	² AABOUD	17H	ATLS	$\sigma(\overline{t} q)$, $\ell + \not\!\!\! E_T + 2$ j (1 <i>b</i> , 1 forward j)
$154\pm~8\pm~9{\pm}19{\pm}4$	³ SIRUNYAN	17AA	CMS	$\sigma(tq), \mu + \ge 2 j (1b)$
$85{\pm}10{\pm}4{\pm}11{\pm}2$	³ SIRUNYAN	17AA	CMS	$\sigma(\overline{t}q),\ \mu+\geq 2$ j (1b)

¹SIRUNYAN 20D based on 35.9 fb⁻¹ of data. Different categories of jet and b jet multiplicity and multivariate discriminators are used to separate signal and background events. The cross section ratio is measured to be $\sigma(tq)/\sigma(\bar{t}q) = 1.68 \pm 0.02 \pm 0.05$. CKM matrix element is obtained as $|f_{LV}V_{tb}| = 0.98 \pm 0.07(\exp)\pm 0.02$ (theo) where f_{LV} is an anomalous form factor. All results are in agreement with the SM.

- ² AABOUD 17H based on 3.2 fb⁻¹ of data. A maximum-likelihood fit to neural-network discriminant distributions is used to separate signal and background events. The third error is for luminosity. The cross section ratio is measured to be $\sigma(tq)/\sigma(\bar{t}q) = 1.72 \pm 0.09 \pm 0.18$. A lower limit $|V_{tb}| > 0.84$ (95% CL) is obtained. All results are in agreement with the SM.
- ³SIRUNYAN 17AA based on 2.2 fb⁻¹ of data. A multivariate discriminator is used to separate signal and background events. The four errors are from statitics, experimental systematics, theory, and luminosity. The cross section ratio is measured to be $\sigma(tq)/\sigma(\bar{t}q) = 1.81 \pm 0.18 \pm 0.15$. CKM matrix element is obtained as $|V_{tb}| = 1.05 \pm 0.07(\exp) \pm 0.02(\text{theo})$. All results are in agreement with the SM.

s-channel Single t Production	Cross Section in	pp Collis	ions at $\sqrt{s} = 13 \mathrm{TeV}$
VALUE (pb)	DOCUMENT ID	TECN	COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

8.2
$$^{+3.5}_{-2.9}$$
 ¹ AAD 23E ATLS $\ell + \not\!\! E_T + 2b$

¹ AAD 23E based on 139 fb⁻¹ of data. The signal significance is 3.3σ over the backgroundonly hypothesis. The result is consistent with the NLO SM prediction of $10.32^{+0.40}_{-0.36}$ pb.

$t \overline{t} H$ Production Cross Section in pp Collisions at $\sqrt{s} = 13$ TeV

VALUE (fb)	DOCUMENT ID	TECN	COMMENT
$\bullet \bullet \bullet$ We do not use t	he following data fo	r averages, fits	, limits, etc. • • •
$33 \pm 31 {+}_{-} {22 \atop 17}$	¹ AAD	22Q ATLS	$H \rightarrow \tau \tau$
$670\!\pm\!90^{+110}_{-100}$	² AABOUD	18BK ATLS	$H \rightarrow b \overline{b}, WW^* \tau \tau, \gamma \gamma, ZZ^*$

 $^1\,{\sf AAD}$ 22Q based on 139 fb $^{-1}$ of data. The measured value includes ${\sf B}(H \rightarrow ~\tau \tau)$ and corresponds to the rapidity range $|y_H| < 2.5$. The value is consistent with the SM prediction, where $B(H \rightarrow \tau \tau) = 6.3\%$ for $m_H = 125.09$ GeV.

 2 AABOUD 18BK based on 79.8 fb $^{-1}$ of data. The observed significance is 5.8 σ relative to the background-only hypothesis. The measurement is consistent with the NLO SM prediction of 507^{+35}_{-50} fb. See Table 3 and Fig. 5 for measurements of individual modes. Combined with the measurements at 7 and 8 TeV, the observed significance is 6.3σ .

Wt Production Cross Section in pp Collisions at $\sqrt{s} = 7$ TeV

VALUE (pb)	DOCUMENT ID		TECN	COMMENT
• • • We do not use the follo	wing data for avera	ges, t	fits, limi	ts, etc. ● ● ●
16.3 ± 4.1	¹ AABOUD	19R	LHC	ATLAS + CMS combined
$16 \begin{array}{c} +5 \\ -4 \end{array}$	² CHATRCHYAN	13C	CMS	$t{+}W$ channel, $2\ell{+} ot\!$
¹ AABOUD 19R based on 1		data	from AT	LAS and CMS at 7 TeV.

²Based on 4.9 fb⁻¹ of data. The result gives $V_{tb} = 1.01 + 0.13(exp) + 0.03(th)$. $V_{tb} > 0.79$ (95% CL) if $V_{tb} < 1$ is assumed. The results assume $m_t = 172.5$ GeV for the acceptance.

W t Production Cross Section in pp Collisions at $\sqrt{s} = 8$ TeV

VALUE (pb)	DOCUMENT ID	TECN	COMMENT
$\bullet \bullet \bullet$ We do not use the follow	wing data for ave	rages, fits, lim	its, etc. • • •
26 ±7	¹ AAD	21AT ATLS	$\ell+\geq 3j$
23.1 ± 3.6	² AABOUD	19R LHC	ATLAS + CMS combined
$23.0 {\pm} 1.3 {+} {3.2 \atop -} {3.5} {\pm} 1.1$	³ AAD	16B ATLS	$2\ell + ot\!$
23.4±5.4	⁴ CHATRCHYAI	N 14AC CMS	$t{+}W$ channel, 2 $\ell{+} ot\!$

 1 AAD 21AT based on 20.2 fb $^{-1}$ of data. In this single lepton channel, only single neutrino is emitted, so that both W and t can be reconstructed. A neural network is trained to separate signal from background. The measured cross section agrees with the NLO+NNLL SM prediction of 22.4 \pm 0.6(scale) \pm 1.4(PDF) pb.

² AABOUD 19R based on 12.2 to 20.3 fb⁻¹ of data from ATLAS and CMS at 8 TeV. ³ AAD 16B based on 20.3 fb⁻¹ of data. The result gives $|V_{tb}| = 1.01 \pm 0.10$ and $|V_{tb}| > 0.80$ (95% CL) without assuming unitarity of the CKM matrix. The results assume m_t

= 172.5 GeV for the acceptance. ⁴ Based on 12.2 fb⁻¹ of data. Events with two oppositely charged leptons, large E_T and a *b*-tagged jet are selected, and a multivariate analysis is used to separate the signal from the backgrounds. The result is consistent with the SM prediction of 22.2 \pm $0.6(\text{scale}) \pm 1.4(\text{PDF})$ pb at approximate NNLO.

W t Production Cross Section in pp Collisions at $\sqrt{s} = 13$ TeV

VALUE (pb)	DOCUMENT ID		TECN	COMMENT	_
ullet $ullet$ $ullet$ We do not use the following	•				_
$79.2 \pm 0.9 {+} {7.7 \atop -} {8.0} {\pm} 1.2$	¹ TUMASYAN	23⊤	CMS	$e^{\pm}\mu^{\mp}+~\geq$ 1j(<i>b</i> -tag)	
$89 \pm 4 \pm 12$	² TUMASYAN				
https://pdg.lbl.gov	Page 40		Crea	ted: 7/25/2024 17:21	L

94 $\pm 10 \ +28 \ \pm 2$	³ AABOUD	18H ATLS	$\ell^+ \ell^- + \ \geq 1 j$
$63.1 \pm \ 1.8 \pm \ 6.4 \pm 2.1$	⁴ SIRUNYAN	18DL CMS	$e^{\pm}\mu^{\mp} + \geq 1$ j(<i>b</i> -tag)

 1 TUMASYAN 23T based on 138 fb $^{-1}$ of data. The result is consistent with the NNLO SM prediction. The differential cross sections are measured as a function of six kinematical variables and are consistent with the NLO SM prediction.

- ² TUMASYAN 21E based on 36 fb⁻¹ of data. A boosted decision tree is used to separate the signal from the dominant $t\bar{t}$ backgrounds. The result corresponds to an observation with a significance exceeding 5 σ and is consistent with the NNLO QCD prediction of 71.7 \pm 1.8(scale) \pm 3.4(PDF) pb or with the approximate NNNLO SM prediction of 79.5^{+1.9}_{-1.8}(scale) ^{+2.0}_{-1.4}(PDF) pb.
- ³AABOUD 18H based on 3.2 fb⁻¹ of data. The last error is from luminosity. A multivariate analysis is used to separate the signal from the backgrounds. The result is consistent with the NLO+NNLL SM prediction of 71.7 \pm 1.8(scale) \pm 3.4(PDF) pb.
- 4 SIRUNYAN 18DL based on 35.9 fb $^{-1}$ of data. The last error is from luminosity. A multivariate analysis is used to separate the signal from the backgrounds. The result is consistent with the NLO+NNLL SM prediction of 71.7 \pm 1.8(scale) \pm 3.4(PDF) pb.

Zt Production Cross Section in pp Collisions at $\sqrt{s} = 13$ TeV

VALUE (fb)	DOCUMENT ID	TECN CO	OMMENT
• • • We do not use the following	g data for averages	, fits, limits, etc.	• • •
87.9^+ $7.5+$ 7.3 - $7.3 6.0$	¹ TUMASYAN	22L CMS 34	$\ell+\geq 2$ j ($\geq 1b$ j)
$97 ~\pm~ 13 ~\pm~ 7$	² AAD	20AB ATLS 34	$\ell + 1,2j + 1bj$
111 \pm 13 $\stackrel{+}{}$ 11 $\stackrel{-}{}$ 9	³ SIRUNYAN	19BF CMS 34	$\ell+\geq 2$ j ($\geq 1b$ j)
600 ±170 ±140	⁴ AABOUD	18AE ATLS 34	$\ell + 1j + 1bj$
$123 + 33 + 29 \\ - 31 - 23$	⁵ SIRUNYAN	18z CMS 34	$\ell + 1j + 1bj$

¹TUMASYAN 22L based on 138 fb⁻¹ of data at 13 TeV. The result is for a dilepton invariant masses above 30 GeV. It agrees with the NLO SM prediction of $94.2^{+1.9}_{-1.8}(\text{scale})\pm2.5(\text{PDF})$ fb. The ratio of t and \overline{t} production cross sections is measured as $2.37^{+0.56}_{-0.42} - 0.13$. The spin asymmetry is measured to be $0.54 \pm 0.16 \pm 0.06$. Both measurements are in agreement with the SM predictions.

- ² AAD 20AB based on 139 fb⁻¹ of data at 13 TeV. Neural networks are used to discriminate tZq signal from backgrounds. The result is for the cross section $\sigma(pp \rightarrow t\ell^+ \ell^- q)$, including non-resonant dilepton pairs, for dilepton invariant masses above 30 GeV and is consistent with the NLO SM prediction of 102^{+5}_{-2} fb.
- ³SIRUNYAN 19BF based on 77.4 fb⁻¹ of data. Two BDT's are used in the analysis: one to discriminate prompt leptons from non-prompt ones; and one to discriminate tZq signal from backgrounds. The result is for the cross section $\sigma(pp \rightarrow tZq \rightarrow t\ell^+\ell^-q)$ for dilepton invariant masses above 30 GeV and is consistent with the NLO SM prediction of 94.2 \pm 3.1 fb.
- ⁴ AABOUD 18AE based on 36.1 fb⁻¹ of data. A multivariate analysis is used to separate the signal from the backgrounds. The result is consistent with the NLO SM prediction of 800 fb with a scale uncertainty of $^{+6.1}_{-7.4}$ %.
- ⁵ SIRUNYAN 18Z based on 35.9 fb⁻¹ of data. A multivariate analysis is used to separate the signal from the backgrounds. The result is for the cross section $\sigma(pp \rightarrow tZq \rightarrow Wb\ell^+\ell^-q)$ and is consistent with the NLO SM prediction of $94.2^{+1.9}_{-1.8}$ (scale) ± 2.5 (PDF) fb. Superseded by SIRUNYAN 19BF.

γt Production Cross Section in pp Collisions at $\sqrt{s} = 13$ TeV

VALUE (fb)	DOCUMENT I	D TECN	COMMENT
$\bullet \bullet \bullet$ We do not use the follow	ving data for avera	ges, fits, limits,	etc. • • •
	¹ AAD	23BN ATLS	$\gamma + \ell + jets + ot\!$
¹ AAD 23BN measured fiduce data. The measured cross SM prediction of $515 + 36$ - 42	section is 688 \pm 2		

Single t-Quark Production Cross Section in ep Collisions

VALUE (pb)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use th	e following	data for averages	s, fits,	limits, e	etc. ● ● ●
<0.25	95	¹ AARON			$e^{\pm} p \rightarrow e^{\pm} t X$
<0.55	95				$e^{\pm}p \rightarrow e^{\pm}tX$
<0.225	95	³ CHEKANOV	03	ZEUS	$e^{\pm} p ightarrow e^{\pm} t X$

¹AARON 09A looked for single top production via FCNC in $e^{\pm}p$ collisions at HERA with 474 pb⁻¹ of data at $\sqrt{s} = 301$ –319 GeV. The result supersedes that of AKTAS 04.

²AKTAS 04 looked for single top production via FCNC in e^{\pm} collisions at HERA with 118.3 pb $^{-1}$, and found 5 events in the e or μ channels while 1.31 \pm 0.22 events are expected from the Standard Model background. No excess was found for the hadronic channel. The observed cross section of $\sigma(ep \rightarrow etX) = 0.29^{+0.15}_{-0.14}$ pb at $\sqrt{s} = 319$ GeV gives the quoted upper bound if the observed events are due to statistical fluctuation. ³CHEKANOV 03 looked in 130.1 pb⁻¹ of data at $\sqrt{s} = 301$ and 318 GeV. The limit is

for $\sqrt{s} = 318$ GeV and assumes $m_t = 175$ GeV.

$t\overline{t}$ Production Cross Section in $p\overline{p}$ Collisions at $\sqrt{s} = 1.8$ TeV

Only the final combined $t\bar{t}$ production cross sections obtained from Tevatron Run I by the CDF and D0 experiments are quoted below.

VALUE (pb)	DOCUMENT ID		TECN	COMMENT
$\bullet \bullet \bullet$ We do not use the follow	ing data for average	s, fits,	limits,	etc. ● ● ●
$5.69\!\pm\!1.21\!\pm\!1.04$	¹ ABAZOV	03A	D0	Combined Run I data
$6.5 \ \begin{array}{c} +1.7 \\ -1.4 \end{array}$	² AFFOLDER	01 A	CDF	Combined Run I data
	1 - 1 (T) D			

 $^1\,{\rm Combined}$ result from 110 ${\rm pb}^{-1}$ of Tevatron Run I data. Assume $m_t=$ 172.1 GeV. $^2\,{\rm Combined}$ result from 105 ${\rm pb}^{-1}$ of Tevatron Run I data. Assume $m_t=$ 175 GeV.

$t\overline{t}$ Production Cross Section in $p\overline{p}$ Collisions at $\sqrt{s} = 1.96$ TeV

Unless otherwise noted the first quoted error is from statistics, the second from systematic uncertainties, and the third from luminosity. If only two errors are quoted the luminosity is included in the systematic uncertainties.

VALUE (pb)	DOCUMENT ID	TECN COMMENT
• • • We do not use the fo	llowing data for a	averages, fits, limits, etc. • • •
$7.26 \!\pm\! 0.13 \! \substack{+0.57 \\ -0.50}$	¹ ABAZOV	16F D0 $\ell\ell$, ℓ +jets channels
8.1 ± 2.1	² AALTONEN	14A CDF $\ell + au_{m{h}} + \geq 2$ jets ($\geq 1b$ -tag)
$7.60\!\pm\!0.20\!\pm\!0.29\!\pm\!0.21$	³ AALTONEN	14H TEVA $\ell\ell$, ℓ +jets, all-jets channels
$8.0 \ \pm 0.7 \ \pm 0.6 \ \pm 0.5$	⁴ ABAZOV	14K D0 $\ell + ot\!$
7.09±0.84	⁵ AALTONEN	13AB CDF $\ell\ell + ot\!$
7.5 ± 1.0	⁶ AALTONEN	13G CDF $\ell + \not\!\!E_T + \geq$ 3jets (\geq 1 <i>b</i> -tag)
$8.8 \pm 3.3 \pm 2.2$	⁷ AALTONEN	12AL CDF $ au_{m{h}}+ar{ oldsymbol{\mathbb{Z}}}_{T}$ +4j (\geq 1b)
https://pdg.lbl.gov	Page 42	2 Created: 7/25/2024 17:21

$8.5 \pm 0.6 \pm 0.7$	⁸ AALTONEN	11D	CDF	$\ell + ot\!$
$7.64 \pm 0.57 \pm 0.45$	⁹ AALTONEN			$\ell + \not\!$
$7.99 \pm 0.55 \pm 0.76 \pm 0.46$	¹⁰ AALTONEN	11Y	CDF	$\mathbb{E}_{T}+2$ jets (0,1,2 <i>b</i> -tag)
$7.78 \substack{+0.77 \\ -0.64}$	¹¹ ABAZOV	11E	D0	$\ell + ot\!$
$7.56 \substack{+0.63 \\ -0.56}$	¹² ABAZOV	11Z	D0	Combination
$6.27\!\pm\!0.73\!\pm\!0.63\!\pm\!0.39$	¹³ AALTONEN			Repl. by AALTONEN 13AB
7.2 $\pm 0.5 \pm 1.0 \pm 0.4$	¹⁴ AALTONEN ¹⁵ AALTONEN			\geq 6 jets, vtx <i>b</i> -tag
$\begin{array}{rrrr} 7.8 & \pm 2.4 & \pm 1.6 & \pm 0.5 \\ 7.70 {\pm} 0.52 \end{array}$	¹⁶ AALTONEN			$\ell + \geq 3$ jets, soft- <i>e b</i> -tag $\ell + \not\!\!\!E_T + \geq 3$ jets + <i>b</i> -tag,
	¹⁷ ABAZOV			norm. to $\sigma(extsf{Z} o extsf{\ell}\ell)_{TH}$
6.9 ± 2.0		101	D0	\geq 6 jets with 2 <i>b</i> -tags
$6.9 \pm 1.2 \begin{array}{c} +0.8 \\ -0.7 \end{array} \pm 0.4$	¹⁸ ABAZOV		D0	
9.6 $\pm 1.2 \ {+0.6 \atop -0.5} \ \pm 0.6$	¹⁹ AALTONEN	09 AD	OCDF	$\ell\ell + ot\!$
9.1 $\pm 1.1 \ +1.0 \ \pm 0.6$	²⁰ AALTONEN	09н	CDF	$\ell + \geq$ 3 jets+ $ ot\!$
$8.18^{+0.98}_{-0.87}$	²¹ ABAZOV	09 AG	D0	$\ell+{ m jets},\ell\ell$ and $\ell au+{ m jets}$
$7.5 \hspace{.1in} \pm 1.0 \hspace{.1in} \stackrel{+ 0.7 }{- 0.6 } \hspace{.1in} \stackrel{+ 0.6 }{- 0.5 }$	²² ABAZOV	09 R	D0	$\ell\ell$ and $\ell au+{ m jets}$
$8.18^{+0.90}_{-0.84}{\pm}0.50$	²³ ABAZOV	08M	D0	ℓ + n jets with 0,1,2 <i>b</i> -tag
7.62 ± 0.85	²⁴ ABAZOV	08N	D0	ℓ + n jets + <i>b</i> -tag or kinematics
$8.5 \begin{array}{c} +2.7 \\ -2.2 \end{array}$	²⁵ ABULENCIA	08	CDF	$\ell^+\ell^-~(\ell=e,~\mu)$
$8.3 \ \pm 1.0 \ +2.0 \ \pm 0.5$	²⁶ AALTONEN	07 D	CDF	\geq 6 jets, vtx <i>b</i> -tag
$7.4 \ \pm 1.4 \ \pm 1.0$	²⁷ ABAZOV	07 0	D0	$\ell\ell+{\sf jets},{\sf vtx}\;{\it b}{\sf -tag}$
$\begin{array}{rrrrr} \text{4.5} & +2.0 & +1.4 \\ & -1.9 & -1.1 \end{array} \pm 0.3 \end{array}$	²⁸ ABAZOV	07 P	D0	\geq 6 jets, vtx <i>b</i> -tag
$6.4 \ \begin{array}{c} +1.3 \\ -1.2 \end{array} \pm 0.7 \ \pm 0.4$	²⁹ ABAZOV	07 R	D0	$\ell+\geq$ 4 jets
$6.6\ \pm 0.9\ \pm 0.4$	³⁰ ABAZOV	06X	D0	ℓ + jets, vtx <i>b</i> -tag
8.7 $\pm 0.9 \ +1.1 \\ -0.9$	³¹ ABULENCIA	06Z	CDF	ℓ + jets, vtx <i>b</i> -tag
$5.8 \pm 1.2 \ {+0.9 \atop -0.7}$	³² ABULENCIA, A	06 C	CDF	missing ${\it E}_T$ + jets, vt× b -tag
$7.5 \ \pm 2.1 \ \begin{array}{c} +3.3 \ +0.5 \\ -2.2 \ \ -0.4 \end{array}$	³³ ABULENCIA, A	06E	CDF	6–8 jets, <i>b</i> -tag
$8.9 \ \pm 1.0 \ +1.1 \\ -1.0$	³⁴ ABULENCIA, A	06F	CDF	$\ell + \geq$ 3 jets, <i>b</i> -tag
$8.6 \ +1.6 \ \pm 0.6$	³⁵ ABAZOV	05Q	D0	$\ell+{\sf n}$ jets
$8.6^{+3.2}_{-2.7} \pm 1.1 \pm 0.6$	³⁶ ABAZOV	05 R	D0	di-lepton $+$ n jets
$6.7 \begin{array}{c} +1.4 \\ -1.3 \end{array} \begin{array}{c} +1.6 \\ -1.1 \end{array} \pm 0.4$	³⁷ ABAZOV	05X	D0	ℓ + jets / kinematics
5.3 $\pm 3.3 \ +1.3 \ -1.0$	³⁸ ACOSTA	05 S	CDF	$\ell + { m jets} \; / \; { m soft} \; \mu \; {\it b}{ m -tag}$
$6.6 \pm 1.1 \pm 1.5$	³⁹ ACOSTA	05T	CDF	ℓ + jets / kinematics
$6.0 \ \begin{array}{c} +1.5 \ +1.2 \\ -1.6 \ -1.3 \end{array}$	⁴⁰ ACOSTA	05 U	CDF	$\ell + jets/kinematics + vtx b-tag$
$5.6 \begin{array}{c} +1.2 \\ -1.1 \end{array} \begin{array}{c} +0.9 \\ -0.6 \end{array}$	⁴¹ ACOSTA	05v	CDF	$\ell+{\sf n}$ jets
7.0 $^{+2.4}_{-2.1}$ $^{+1.6}_{-1.1}$ ± 0.4	⁴² ACOSTA	041	CDF	di-lepton $+$ jets $+$ missing ET

Page 43

- ¹ ABAZOV 16F based on 9.7 fb⁻¹ of data. The result is for $m_t = 172.5$ GeV, and the m_t dependence is shown in Table V and Fig. 9. The result agrees with the NNLO+NNLL SM prediction of $7.35 \substack{+0.23 \\ -0.27}$ pb.
- ² Based on 9 fb⁻¹ of data. The measurement is in the channel $t\bar{t} \rightarrow (b\ell\nu)(b\tau\nu)$, where τ decays into hadrons (τ_h) , and ℓ (e or μ) include ℓ from τ decays (τ_ℓ) . The result is for $m_t = 173$ GeV.
- ³ Based on 8.8 fb⁻¹ of data. Combination of CDF and D0 measurements given, respectively, by $\sigma(t\bar{t}; \text{CDF}) = 7.63 \pm 0.31 \pm 0.36 \pm 0.16$ pb, $\sigma(t\bar{t}; \text{D0}) = 7.56 \pm 0.20 \pm 0.32 \pm 0.46$ pb. All the results are for $m_t = 172.5$ GeV. The m_t dependence of the mean value is parametrized in eq. (1) and shown in Fig. 2.
- ⁴ Based on 9.7 fb⁻¹ of data. Differential cross sections with respect to m_{tt} , |y(top)|, $E_T(top)$ are shown in Figs. 9, 10, 11, respectively, and are compared to the predictions of MC models.
- ⁵Based on 8.8 fb⁻¹ of $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV.
- ⁶Based on 8.7 fb⁻¹ of $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV. Measure the $t\overline{t}$ cross section simultaneously with the fraction of $t \rightarrow Wb$ decays. The correlation coefficient between those two measurements is -0.434. Assume unitarity of the 3×3 CKM matrix and set $|V_{tb}| > 0.89$ at 95% CL.
- ⁷ Based on 2.2 fb⁻¹ of data in $p\overline{p}$ collisions at 1.96 TeV. The result assumes the acceptance for $m_t = 172.5$ GeV.
- ⁸ Based on 1.12 fb⁻¹ and assumes $m_t = 175$ GeV, where the cross section changes by ± 0.1 pb for every ∓ 1 GeV shift in m_t . AALTONEN 11D fits simultaneously the $t\bar{t}$ production cross section and the *b*-tagging efficiency and find improvements in both measurements.
- ⁹Based on 2.7 fb⁻¹. The first error is from statistics and systematics, the second is from luminosity. The result is for $m_t = 175$ GeV. AALTONEN 11W fits simultaneously a jet flavor discriminator between *b*-, *c*-, and light-quarks, and find significant reduction in the systematic error.
- 10 Based on 2.2 fb $^{-1}$. The result is for $m_t =$ 172.5 GeV. AALTONEN 11Y selects multi-jet events with large $\not\!\!E_T$, and vetoes identified electrons and muons.
- 11 Based on 5.3 fb $^{-1}$. The error is statistical + systematic + luminosity combined. The result is for $m_t = 172.5$ GeV. The results for other m_t values are given in Table XII and eq.(10) of ABAZOV 11E.
- 12 Combination of a dilepton measurement presented in ABAZOV 11Z (based on 5.4 fb $^{-1}$), which yields $7.36 \substack{+0.90 \\ -0.79}$ (stat+syst) pb, and the lepton + jets measurement of ABAZOV 11E. The result is for $m_t = 172.5$ GeV. The results for other m_t values is given by eq.(5) of ABAZOV 11A.
- $^{13}\,\mathrm{Based}$ on 2.8 fb $^{-1}.$ The result is for $m_t=175$ GeV.
- ¹⁴ Based on 2.9 fb⁻¹. Result is obtained from the fraction of signal events in the top quark mass measurement in the all hadronic decay channel.
- ¹⁵ Based on 1.7 fb⁻¹. The result is for $m_t = 175$ GeV. AALTONEN 10V uses soft electrons from *b*-hadron decays to suppress *W*+jets background events.
- ¹⁶ Based on 4.6 fb⁻¹. The result is for $m_t = 172.5$ GeV. The ratio $\sigma(t\bar{t} \rightarrow \ell + \text{jets}) / \sigma(Z/\gamma^* \rightarrow \ell\ell)$ is measured and then multiplied by the theoretical $Z/\gamma^* \rightarrow \ell\ell$ cross section of $\sigma(Z/\gamma^* \rightarrow \ell\ell) = 251.3 \pm 5.0$ pb, which is free from the luminosity error.
- section of $\sigma(Z/\gamma^* \rightarrow \ell \ell) = 251.3 \pm 5.0$ pb, which is free from the luminosity error. ¹⁷ Based on 1 fb⁻¹. The result is for $m_t = 175$ GeV. 7.9 \pm 2.3 pb is found for $m_t = 170$ GeV. ABAZOV 10I uses a likelihood discriminant to separate signal from background, where the background model was created from lower jet-multiplicity data.
- ¹⁸ Based on 1 fb⁻¹. The result is for $m_t = 170$ GeV. For $m_t = 175$ GeV, the result is $6.3^{+1.2}_{-1.1}(\text{stat}) \pm 0.7(\text{syst}) \pm 0.4(\text{lumi})$ pb. Cross section of $t\bar{t}$ production has been measured in the $t\bar{t} \rightarrow \tau_h$ + jets topology, where τ_h denotes hadronically decaying τ leptons. The result for the cross section times the branching ratio is $\sigma(t\bar{t}) \cdot B(t\bar{t} \rightarrow \tau_h + \text{ jets}) = 0.60^{+0.23}_{-0.22} + 0.15_{-0.14} \pm 0.04$ pb for $m_t = 170$ GeV.

- ¹⁹ Based on 1.1 fb⁻¹. The result is for $B(W \rightarrow \ell \nu) = 10.8\%$ and $m_t = 175$ GeV; the mean value is 9.8 for $m_t = 172.5$ GeV and 10.1 for $m_t = 170$ GeV. AALTONEN 09AD used high $p_T e$ or μ with an isolated track to select $t \bar{t}$ decays into dileptons including $\ell = \tau$. The result is based on the candidate event samples with and without vertex *b*-tag.
- 20 Based on 2 fb $^{-1}$. The result is for $m_t=175$ GeV; the mean value is 3% higher for $m_t=170$ GeV and 4% lower for $m_t=180$ GeV.
- ²¹ Result is based on 1 fb⁻¹ of data. The result is for $m_t = 170$ GeV, and the mean value decreases with increasing m_t ; see their Fig. 2. The result is obtained after combining ℓ + jets, $\ell\ell$, and $\ell\tau$ final states, and the ratios of the extracted cross sections are $R^{\ell\ell/\ell j} = 0.86^{+0.19}_{-0.17}$ and $R^{\ell\tau/\ell\ell-\ell j} = 0.97^{+0.32}_{-0.29}$, consistent with the SM expectation of R = 1. This leads to the upper bound of B($t \rightarrow bH^+$) as a function of m_{H^+} . Results are shown in their Fig. 1 for B($H^+ \rightarrow \tau\nu$) = 1 and B($H^+ \rightarrow c\bar{s}$) = 1 cases. Comparison of the m_t dependence of the extracted cross section and a partial NNLO prediction gives $m_t = 169.1^{+5.9}_{-5.2}$ GeV.
- ²² Result is based on 1 fb⁻¹ of data. The result is for $m_t = 170$ GeV, and the mean value changes by -0.07 [m_t (GeV)-170] pb near the reference m_t value. Comparison of the m_t dependence of the extracted cross section and a partial NNLO QCD prediction gives $m_t = 171.5^{+9.9}_{-8.8}$ GeV. The $\ell\tau$ channel alone gives $7.6^{+4.9+3.5+1.4}_{-4.3-3.4-0.9}$ pb and the $\ell\ell$ channel gives $7.5^{+1.2+0.7+0.7}_{-1.1-0.6-0.5}$ pb.
- ²³ Result is based on 0.9 fb⁻¹ of data. The first error is from stat + syst, while the latter error is from luminosity. The result is for m_t =175 GeV, and the mean value changes by $-0.09 \text{ pb}\cdot[m_t(\text{GeV})-175]$.
- ²⁴ Result is based on 0.9 fb⁻¹ of data. The cross section is obtained from the $\ell + \ge 3$ jet event rates with 1 or 2 *b*-tag, and also from the kinematical likelihood analysis of the $\ell + 3$, 4 jet events. The result is for $m_t = 172.6$ GeV, and its m_t dependence shown in Fig. 3 leads to the constraint $m_t = 170 \pm 7$ GeV when compared to the SM prediction.
- ²⁵ Result is based on 360 pb⁻¹ of data. Events with high p_T oppositely charged dileptons $\ell^+ \ell^-$ ($\ell = e, \mu$) are used to obtain cross sections for $t\bar{t}, W^+ W^-$, and $Z \to \tau^+ \tau^-$ production processes simultaneously. The other cross sections are given in Table IV.
- ²⁶Based on 1.02 fb⁻¹ of data. Result is for $m_t = 175$ GeV. Secondary vertex *b*-tag and neural network selections are used to achieve a signal-to-background ratio of about 1/2.
- 27 Based on 425 pb $^{-1}$ of data. Result is for $m_t=$ 175 GeV. For $m_t=$ 170.9 GeV, 7.8 \pm 1.8(stat + syst) pb is obtained.
- 28 Based on 405 \pm 25 pb $^{-1}$ of data. Result is for $m_t=$ 175 GeV. The last error is for luminosity. Secondary vertex *b*-tag and neural network are used to separate the signal events from the background.
- 29 Based on 425 pb $^{-1}$ of data. Assumes $m_t = 175$ GeV.
- 30 Based on $\sim~425~{\rm pb}^{-1}.$ Assuming $m_t=175$ GeV. The first error is combined statistical and systematic, the second one is luminosity.
- ³¹ Based on ~ 318 pb⁻¹. Assuming $m_t = 178$ GeV. The cross section changes by ± 0.08 pb for each \mp GeV change in the assumed m_t . Result is for at least one *b*-tag. For at least two *b*-tagged jets, $t\bar{t}$ signal of significance greater than 5σ is found, and the cross section is $10.1^{+1.6}_{-1.4} + 1.3$ pb for $m_t = 178$ GeV.
- 32 Based on \sim 311 pb $^{-1}$. Assuming $m_t =$ 178 GeV. For $m_t =$ 175 GeV, the result is 6.0 \pm 1.2 $^{+0.9}_{-0.7}$. This is the first CDF measurement without lepton identification, and hence it has sensitivity to the $W \rightarrow \tau \nu$ mode.
- ³³ABULENCIA,A 06E measures the $t\bar{t}$ production cross section in the all hadronic decay mode by selecting events with 6 to 8 jets and at least one b-jet. S/B = 1/5 has been achieved. Based on 311 pb⁻¹. Assuming $m_t = 178$ GeV.

- $^{34}\,\text{Based}$ on \sim 318 pb $^{-1}.$ Assuming $m_t=$ 178 GeV. Result is for at least one b-tag. For at least two b-tagged jets, the cross section is $11.1^{+2.3}_{-1.9} + 2.5_{-1.9}$ pb.
- 35 ABAZOV 05Q measures the top-quark pair production cross section with \sim 230 pb $^{-1}$ of data, based on the analysis of W plus n-jet events where W decays into e or μ plus neutrino, and at least one of the jets is b-jet like. The first error is statistical and systematic, and the second accounts for the luminosity uncertainty. The result assumes m_t = 175 GeV; the mean value changes by (175- $m_t({
 m GeV}))$ imes 0.06 pb in the mass range 160 to 190 GeV.
- 36 ABAZOV 05R measures the top-quark pair production cross section with 224–243 pb $^{-1}$ of data, based on the analysis of events with two charged leptons in the final state. The result assumes $m_t = 175$ GeV; the mean value changes by $(175 - m_t(\text{GeV})) \times 0.08$ pb in the mass range 160 to 190 GeV. ³⁷ Based on 230 pb⁻¹. Assuming $m_t = 175$ GeV.

³⁸Based on 194 pb⁻¹. Assuming $m_t = 175$ GeV.

 39 Based on 194 \pm 11 pb $^{-1}$. Assuming $m_t =$ 175 GeV.

⁴⁰Based on 162 \pm 10 pb⁻¹. Assuming $m_t = 175$ GeV.

- 41 ACOSTA 05V measures the top-quark pair production cross section with \sim 162 pb $^{-1}$ data, based on the analysis of W plus n-jet events where W decays into e or μ plus neutrino, and at least one of the jets is *b*-jet like. Assumes $m_t = 175$ GeV.
- 42 ACOSTA 04I measures the top-quark pair production cross section with 197 \pm 12 pb $^{-1}$ data, based on the analysis of events with two charged leptons in the final state. Assumes $m_t = 175$ GeV.

Ratio of the Production Cross Sections of $t\,\overline{t}\,\gamma$ to $t\,\overline{t}$ at $\sqrt{s}=$ 1.96 TeV

VALUE	<u>DO</u>	CUMENT ID	TECN	COMMENT
• • • We do not	use the following	g data for ave	rages, fits,	limits, etc. • • •
0.024 ± 0.009	1 AA	LTONEN 1	.1z CDF	${m E}_T(\gamma) > 10$ GeV, $ig \eta(\gamma)ig < \! 1.0$
with lepton $+$ measured. The	$ ot\!$	${ m ets}(\geq 1b){ m witl}$ tent with the S	h and with SM predicti	nd systematic combined. Events out central, high E_T photon are on of 0.024 \pm 0.005. The absolute 3 fb. The statistical significance is
tt Production	Cross Section	in <i>pp</i> Collis	sions at $_{ m v}$	$\sqrt{s} = 7$ TeV
VALUE (pb)	<u>CL%</u>	DOCUMENT	T ID	TECN COMMENT
• • • We do not	use the followin	a data for ave	rages fits	limits etc.

ullet ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet 1 AAD 12BE ATLS $\ell^+\ell^+\!+\!E_T\!+\geq 2{
m j}$ +HT <1.7 95

¹Based on 1.04 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. The upper bounds are the same for LL, LR and RR chiral components of the two top quarks.

$t\bar{t}$ Production Cross Section in pp Collisions at $\sqrt{s} = 5.02$ TeV

Unless otherwise noted the first quoted error is from statistics, the second from systematic uncertainties, and the third from luminosity. If only two errors are quoted the luminosity is included in the systematic uncertainties.

VALUE (pb)	DOCUMENT ID	DOCUMENT ID		COMMENT			
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$							
$67.5 \pm 0.9 \pm 2.6$ $60.7 \pm 5.0 \pm 2.8 \pm 1.1$	¹ AAD 2 TUMASYAN			dilepton + single ℓ channels $e + \mu + \ge 2$ jets			
$63.0 \pm 4.1 \pm 3.0$				combination of $e + \mu + \ge$			
				2 jets, $\ell+$ jets			

$69.5 \pm 6.1 \pm 5.6 \pm 1.$	6
-------------------------------	---

⁴ SIRUNYAN 18AQ CMS ℓ +jets, $\ell\ell$ +jets

- ¹AAD 23J based on 257 pb⁻¹ of data from pp collisions. The second error is the sum of systematics (±2.3), luminosity(±1.1) and beam energy (±0.2) uncertainties. The result agrees with the NNLO+NNLL SM prediction of $68.2^{+5.2}_{-5.3}$ pb.
- ² TUMASYAN 22T based on 302 pb⁻¹ of data from pp collisions at $\sqrt{s} = 5.02$ TeV. The errors are from statistics, systematics and luminosity.
- 3 Combination of the measurement by TUMASYAN 22T and the measurement in the $\ell+jets$ channel by SIRUNYAN 18AQ. The errors are from statistics and systematics + luminosity. The result is in agreement with the NNLO+NNLL SM prediction $66.8^{+2.9}_{-3.1}$ pb.
- $\overset{4}{\rm SIRUNYAN}$ 18AQ based on 27.4 pb $^{-1}$ of data from pp collisions at \sqrt{s} = 5.02 TeV. The result is in agreement with the NNLO SM prediction $68.9 \overset{+1.9}{-2.3} ({\rm scale}) \pm 2.3 ({\rm PDF}) \overset{+1.4}{-1.0} (\alpha_s)$ pb.

$t\overline{t}$ Production Cross Section in pp Collisions at $\sqrt{s} = 7$ TeV

Unless otherwise noted the first quoted error is from statistics, the second from systematic uncertainties, and the third from luminosity. If only two errors are quoted the luminosity is included in the systematic uncertainties.

VALUE (pb)	DOCUMENT ID TECN	COMMENT
$\bullet \bullet \bullet$ We do not use the f	ollowing data for averages, fits,	limits, etc. • • •
$168.5 \pm \ 0.7 {+} { 6.2 + 3.4 \atop { 5.9 - 3.2 } }$	¹ AABOUD 23 ATLS	$5 1\ell + ot\!$
178.5 ± 4.7	² AAD 23AY LHC	$e^{\pm}\mu^{\mp}$ pair; ATLAS+CMS combined
$161.7 \pm \ 6.0 {\pm} 12.0 {\pm} \ 3.6$	³ KHACHATRY17B CMS	$\ell + \not\!$
$173.6 \pm \ 2.1 {+} {+} {+} {4.5} {\pm} {+} {3.8}$	⁴ KHACHATRY16aw CMS	$e+\mu+ ot\!$
181.2 \pm 2.8 $^{+10.8}_{-10.6}$	⁵ AAD 15BO ATLS	5 $e+\mu+ ot\!$
$178 ~\pm~ 3 ~\pm 16 ~\pm~ 3$	⁶ AAD 15CC ATLS ⁷ AAIJ 15R LHCI	
$182.9 \pm 3.1 \pm 6.4$ $194 \pm 18 \pm 46$ $139 \pm 10 \pm 26$ $158.1 \pm 2.1 \pm 10.8$ $152 \pm 12 \pm 32$ $177 \pm 20 \pm 14 \pm 7$ $176 \pm 5 + 14 \pm 8$ $187 \pm 11 + 18 \pm 6$ $186 \pm 13 \pm 20 \pm 7$ $143 \pm 14 \pm 22 \pm 3$	 ⁸ AAD ⁹ AAD ⁹ AAD ¹⁰ CHATRCHYAN 13AY ¹⁰ CHATRCHYAN 13BB ¹¹ CHATRCHYAN 13BB ¹² CHATRCHYAN 13BE ¹³ AAD ¹² AAD ¹² AAD ¹² BAD ¹² AAD ¹² BAD ¹² AAD ¹² BAD ¹² CHATRCHYAN 12BC ¹⁶ AAD ¹² CHATRCHYAN 12AC 	5 $e + \mu + 1$ or 2b jets 5 $\tau_h + \not\!$
$161.9 \pm \ 2.5 {+}_{-} \ {}_{5.0}^{+} \pm \ 3.6$	¹⁸ CHATRCHYAN 12AX CMS	$\ell\ell+ ot\!$
145 $\pm 31 \begin{array}{c} +42 \\ -27 \end{array}$	¹⁹ AAD 11A ATLS	5 $\ell + \not\!\!\! E_T + \ge 4$ j, $\ell \ell + \not\!\!\! E_T + \ge 2$ j
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	 20 CHATRCHYAN 11AA CMS ²¹ CHATRCHYAN 11F CMS 	

154	± 17	\pm 6		²² CHATRCHYAN 11z		
194	± 72	± 24	± 21	²³ KHACHATRY11A	CMS	$\ell\ell + ot\!$

- ¹AABOUD 23 based on 4.6 fb⁻¹ of data. The measurement is performed using a multivariate event classifier based on a binary learning algorithm which differentiates $t \bar{t}$ events from backgrounds in a three-dimensional space. The result is in agreement with the NNLO+NNLL SM prediction of 177^{+5}_{-6} (scale) ± 9 (PDF+ α_s) pb for $m_t = 172.5$ GeV. Compared to the measured cross section using the dilepton mode of AAD 14AY, significance of discrepancy is between 1.9σ to 2.1σ .
- ²AAD 23AY based on 5 fb⁻¹ of data using $m_t = 172.5$ GeV. The ratio of the combined cross section at $\sqrt{s} = 8$ TeV to this one at $\sqrt{s} = 7$ TeV is determined as 1.363 ± 0.032 . The values of the cross sections as well as the ratio are consistent with the NNLO+NNLL SM predictions.
- 3 KHACHATRYAN 17B based on 5.0 fb $^{-1}$ of data, using a binned likelihood fit of templates to the data. Also the ratio $\sigma(t\bar{t}; 8 \text{ TeV})/\sigma(t\bar{t}; 7 \text{ TeV}) = 1.43 \pm 0.04 \pm 0.07 \pm 0.05$ is reported. The results are in agreement with NNLO SM predictions.
- 4 KHACHATRYAN 16AW based on 5.0 fb $^{-1}$ of data, using a binned likelihood fit to differential distributions of b-tagged and non-b-tagged jets. The result is in good agreement with NNLO SM predictions.
- 5 Based on 4.6 fb $^{-1}$ of data. Uses a template fit to distributions of $\not\!\!\!E_T$ and jet multiplicities to measure simultaneously $t \bar{t}$, W W, and $Z/\gamma^* \rightarrow \tau \tau$ cross sections, assuming $m_t =$ 172.5 GeV.
- 6 AAD 15CC based on 4.6 fb⁻¹ of data. The event selection criteria are optimized for the ℓau_h + jets channel. Using only this channel 183 \pm 9 \pm 23 \pm 3 pb is derived for the cross section.
- 7 AAIJ 15R, based on 1.0 fb $^{-1}$ of data, reports 0.239 \pm 0.053 \pm 0.033 \pm 0.024 pb cross section for the forward fiducial region $p_T(\mu) > 25$ GeV, $2.0 < \eta(\mu) < 4.5$, 50 GeV $< p_T(b) < 100$ GeV, $2.2 < \eta(b) < 4.2$, $\Delta R(\mu, b) > 0.5$, and $p_T(\mu+b) > 20$ GeV. The three errors are from statistics, systematics, and theory. The result agrees with the SM NLO prediction.
- 8 AAD 14AY reports 182.9 \pm 3.1 \pm 4.2 \pm 3.6 \pm 3.3 pb value based on 4.6 fb $^{-1}$ of data. The four errors are from statistics, systematic, luminosity, and the 0.66% beam energy uncertainty. We have combined the systematic uncertainties in quadrature. The result is for $m_t = 172.5$ GeV; for other m_t , $\sigma(m_t) = \sigma(172.5$ GeV)×[1-0.0028×($m_t - 172.5$ GeV)]. The result is consistent with the SM prediction at NNLO.
- 9 Based on 1.67 fb $^{-1}$ of data. The result uses the acceptance for $m_t = 172.5$ GeV.

- ¹⁰ Based on 3.54 fb⁻¹ of data. ¹¹ Based on 2.3 fb⁻¹ of data. ¹² Based on 3.9 fb⁻¹ of data. ¹³ Based on 35 pb⁻¹ of data for an assumed top quark mass of $m_t = 172.5$ GeV.
- $^{14}\,\rm Based$ on 0.70 fb $^{-1}$ of data. The 3 errors are from statistics, systematics, and luminosity. The result uses the acceptance for $m_t=$ 172.5 GeV.
- 15 Based on 35 pb $^{-1}$ of data. The 3 errors are from statistics, systematics, and luminosity. The result uses the acceptance for $m_t = 172.5$ GeV and $173 \pm 17 + \frac{18}{-16} \pm 6$ pb is found without the *b*-tag.
- $^{16}\,{\rm Based}$ on 2.05 fb $^{-1}$ of data. The hadronic τ candidates are selected using a BDT technique. The 3 errors are from statistics, systematics, and luminosity. The result uses the acceptance for $m_t = 172.5$ GeV.
- $^{17}\,\textsc{Based}$ on 2.0 fb $^{-1}$ and 2.2 fb $^{-1}$ of data for $\ell=e$ and $\ell=\mu$, respectively. The 3 errors are from statistics, systematics, and luminosity. The result uses the acceptance for m_t = 172.5 GeV.
- 18 Based on 2.3 fb $^{-1}$ of data. The 3 errors are from statistics, systematics, and luminosity. The result uses the profile likelihood-ratio (PLB) method and an assumed m_t of 172.5 GeV.

- $^{19}\,\text{Based}$ on 2.9 pb $^{-1}$ of data. The result for single lepton channels is 142 \pm 34 $^{+50}_{-31}$ pb, while for the dilepton channels is 151 $^{+78}_{-62}$ -24 pb.
- $^{20}\,\rm Result$ is based on 36 $\rm pb^{-1}$ of data. The first uncertainty corresponds to the statistical and systematic uncertainties, and the second corresponds to the luminosity.
- ²¹ Based on 36 pb⁻¹ of data. The ratio of $t\bar{t}$ and Z/γ^* cross sections is measured as $\sigma(pp \rightarrow t\bar{t})/\sigma(pp \rightarrow Z/\gamma^* \rightarrow e^+e^-/\mu^+\mu^-) = 0.175 \pm 0.018(\text{stat})\pm 0.015(\text{syst})$ for 60 < $m_{\ell\ell}$ < 120 GeV, for which they use an NNLO prediction for the denominator cross section of 972 ± 42 pb.
- 22 Result is based on 36 pb $^{-1}$ of data. The first error is from statistical and systematic uncertainties, and the second from luminosity. This is a combination of a measurement in the dilepton channel (CHATRCHYAN 11F) and the measurement in the ℓ + jets channel (CHATRCHYAN 11Z) which yields 150 \pm 9 \pm 17 \pm 6 pb.
- $^{23}\text{Result}$ is based on 3.1 \pm 0.3 pb^{-1} of data.

$t\overline{t}$ Production Cross Section in pp Collisions at $\sqrt{s} = 8$ TeV

Unless otherwise noted the first quoted error is from statistics, the second from systematic uncertainties, and the third from luminosity. If only two errors are quoted the luminosity is included in the systematic uncertainties.

VALUE (pb)	DOCUMENT ID TI	ECN	COMMENT
• • • We do not use the	following data for averages,	fits, l	imits, etc. • • •
$243.3^{+6.0}_{-5.9}$	¹ AAD 23AY LI	HC	$e^{\pm}\mu^{\mp}$ pair; ATLAS+CMS combined
$248.3\!\pm\!0.7\!\pm\!13.4\!\pm\!4.7$	² AABOUD 18BH A	TLS	$\ell + \not\!\!\! E_T + \ge 4 \mathrm{j} \ (\ge 1 b)$
$239 \hspace{0.1in} \pm 4 \hspace{0.1in} \pm 28 \hspace{0.1in} \pm 5$	³ AABOUD 17z A	TLS	$ au_{m{h}} + E_T + \geq 2 \mathbf{j} \ (\geq 2b)$
$228.5\!\pm\!3.8\!\pm\!13.7\!\pm\!6.0$	⁴ KHACHATRY17B C	MS	$\overset{\cdot\cdot}{\ell+\not\!$
$242.9 \pm 1.7 \pm$ 8.6	⁵ AAD 16вк А	TLS	$e+\mu+1$ or $2b$ jets
$244.9 {\pm} 1.4 {+}_{-} {}$	⁶ KHACHATRY16aw C	MS	$e+\mu+ ot\!$
$275.6\!\pm\!6.1\!\pm\!37.8\!\pm\!7.2$	⁷ KHACHATRY16BC C	MS	\geq 6j (\geq 2 <i>b</i>)
$260 \pm 1 \ \begin{array}{c} +24 \\ -25 \end{array}$	⁸ AAD 15BP A	TLS	$\ell {+} ot\!$
	⁹ AAIJ 15r LI	НСВ	$\mu + \geq 1$ j(<i>b</i> -tag) forward region
$242.4\!\pm\!1.7\!\pm\!10.2$	¹⁰ AAD 14AY A	TLS	$e + \mu + 1$ or 2b jets
$239 \hspace{.1in} \pm 2 \hspace{.1in} \pm 11 \hspace{.1in} \pm 6$	¹¹ CHATRCHYAN 14F C		$\ell\ell{+}{ ot\!$
$257 \hspace{0.1in} \pm 3 \hspace{0.1in} \pm 24 \hspace{0.1in} \pm 7$	¹² KHACHATRY14s C	MS	$\ell + \tau_h + \not\!$
-	-		

- ¹AAD 23AY based on 20 fb⁻¹ of data using $m_t = 172.5$ GeV. The ratio of this cross section at $\sqrt{s} = 8$ TeV to the combined cross section at $\sqrt{s} = 7$ TeV is determined as 1.363 ± 0.032 . The values of cross sections as well as their ratio are consistent with the NNLO+NNLL SM predictions.
- ²AABOUD 18BH based on 20.2 fb⁻¹ of data. The result is for $m_t = 172.5$ GeV. To reduce effects of uncertainties in the jet energy scale and *b*-tagging efficiency, they are included as nuisance parameters in the fit of discriminant distributions, after separating selected events into three regions. Furthermore the *W*+jets background distribution is modelled using *Z*+jets event data.
- ³AABOUD 17Z based on 20.2 fb⁻¹ of data, using the mode $t\overline{t} \rightarrow \tau \nu q' \overline{q} b\overline{b}$ with τ decaying hadronically. Single prong and 3 prong decays of τ are separately analyzed. The result is consistent with the SM. The third quoted uncertainty is due to luminosity.
- ⁴ KHACHATRYAN 17B based on 19.6 fb⁻¹ of data, using a binned likelihood fit of templates to the data. Also the ratio $\sigma(t\,\overline{t};\,8\,\text{TeV})/\sigma(t\,\overline{t};\,7\,\text{TeV}) = 1.43\pm0.04\pm0.07\pm0.05$ is reported. The results are in agreement with NNLO SM predictions.
- ⁵AAD 16BK is an update of the value from AAD 14AY using the improved luminosity calibration. The value 242.9 \pm 1.7 \pm 5.5 \pm 5.1 \pm 4.2 pb is reported, where we have combined the systematic uncertainties in quadrature. Also the ratio $\sigma(t\bar{t}; 8\text{TeV})/\sigma(t\bar{t};$

7TeV) = 1.328 \pm 0.024 \pm 0.015 \pm 0.038 \pm 0.001 has been updated. The former result is consistent with the SM predictions at NNLO, while the latter result is 2.1 σ below the expectation.

- 6 KHACHATRYAN 16AW based on 19.7 fb $^{-1}$ of data, using a binned likelihood fit to differential distributions of *b*-tagged and non-*b*-tagged jets. The result is in good agreement with NNLO SM predictions.
- 7 KHACHATRYAN 16BC based on 18.4 fb $^{-1}$ of data. The last uncertainty is due to luminosity. Cuts on kinematical fit probability and $\Delta R(b,b)$ are imposed. The major QCD background is determined from the data. The result is for $m_t = 172.5$ GeV and in agreement with the SM prediction. The top quark p_T spectra, also measured, are significantly softer than theoretical predictions.
- 8 AAD 15BP based on 20.3 fb $^{-1}$ of data. The result is for m_t = 172.5 GeV and in agreement with the SM prediction 253^{+13}_{-15} pb at NNLO+NNLL. Superseded by AABOUD 18BH.
- 9 AAIJ 15R, based on 2.0 fb $^{-1}$ of data, reports 0.289 \pm 0.043 \pm 0.040 \pm 0.029 pb cross section for the forward fiducial region $p_T(\mu) > 25$ GeV, 2.0 $< \eta(\mu) <$ 4.5, 50 GeV < $p_T(b) < 100 \text{ GeV}, 2.2 < \eta(b) < 4.2, \Delta R(\mu,b) > 0.5, \text{ and } p_T(\mu+b) > 20 \text{ GeV}.$ The three errors are from statistics, systematics, and theory. The result agrees with the SM NLO prediction.
- 10 AAD 14AY reports 242.4 \pm 1.7 \pm 5.5 \pm 7.5 \pm 4.2 pb value based on 20.3 fb $^{-1}$ of data. The four errors are from statistics, systematic, luminosity, and the 0.66% beam energy uncertainty. We have combined the systematic uncertainties in quadrature. The result is for $m_t = 172.5$ GeV; for other m_t , $\sigma(m_t) = \sigma(172.5$ GeV)× $[1-0.0028 \times (m_t - 172.5$ GeV)]. Also measured is the ratio $\sigma(t\bar{t}; 8$ TeV) $/\sigma(t\bar{t}; 7$ TeV) = $1.326 \pm 0.024 \pm 0.015 \pm 0.049 \pm 0.001$. The results are consistent with the SM predictions at NNLO. ¹¹ Based on 5.3 fb⁻¹ of data. The result is for $m_t = 172.5$ GeV, and a parametrization is given in eq.(6.1) for the mean value at other m_t values. The result is in agreement with
- the SM prediction $252.9^{+6.4}_{-8.6}$ pb at NNLO.
- ¹²Based on 19.6 fb⁻¹ of data. The measurement is in the channel $t\overline{t} \rightarrow (b\ell\nu)(b\tau\nu)$, where τ decays into hadrons (τ_h) . The result is for $m_t = 172.5$ GeV. For $m_t = 173.3$ GeV, the cross section is lower by 3.1 pb.

$t\overline{t}$ Production Cross Section in pp Collisions at $\sqrt{s} = 13$ TeV

VALUE (pb)	DOCUMENT ID TECH	I COMMENT
\bullet \bullet We do not use the fol	lowing data for averages, fits,	limits, etc. • • •
$829 ~\pm~ 1 ~\pm 15.4$		S $e^{\pm}\mu^{\mp}+1$ or 2 <i>b</i> -jets
791 \pm 1 \pm 21 \pm 14	² TUMASYAN 21J CMS	$5 1\ell + jets$
$830 \pm 0.4 {\pm} 36 {\pm} 14$	³ AAD 20AH ATL	$\ell_{\ell} = 0$ S $\ell_{\ell} + \ell_{\ell} \geq 2$ jets ($\geq 1b$ -tag)
$826.4 \pm \ 3.6 \pm 11.5 \pm 15.8$	⁴ AAD 20Q ATL	S $e\mu + 1$ or 2 <i>b</i> -jets
$781 \hspace{.1in} \pm \hspace{.1in} 7 \hspace{.1in} \pm 62 \hspace{.1in} \pm 20$	⁵ SIRUNYAN 20V CMS	$\ell \tau_h + \geq 3$ jets ($\geq 1b$ -tag)
$803 \hspace{.1in} \pm \hspace{.1in} 2 \hspace{.1in} \pm 25 \hspace{.1in} \pm 20$	⁶ SIRUNYAN 19AR CMS	
	⁷ SIRUNYAN 19P CMS	
$815 \hspace{0.2cm} \pm \hspace{0.2cm} 9 \hspace{0.2cm} \pm 38 \hspace{0.2cm} \pm 19$	⁸ KHACHATRY17N CMS	$e \mu + \geq 2 j \ (\geq 1 b j)$
$888 \hspace{0.1in} \pm \hspace{0.1in} 2 \hspace{0.1in} \begin{array}{c} +26 \\ -28 \end{array} \hspace{0.1in} \pm 20$	⁹ SIRUNYAN 17W CMS	$\ell \ell + \geq 1$ j
818 \pm 8 ± 35	¹⁰ AABOUD 16R ATL	S $e+\mu+1$ or $2b$ jets
746 ± 58 ± 53 ± 36	¹¹ KHACHATRY16J CMS	
1	1	

¹ AAD 23S based on 140 fb⁻¹ of data at 13 TeV. The second error is the sum of systematic effects (± 13), luminosity (± 8), and beam energy (± 2) uncertainties. This measurement supersedes that of AAD 20Q. The result is in good agreement with the NNLO+NNLL SM prediction.

- ²TUMASYAN 21J result is based on 137 fb⁻¹ of data. The last uncertainty is due to the beam luminosity. The result is in agreement with the SM prediction of 832^{+40}_{-46} pb at NNLO+NNLL. Measurements of differential and double-differential cross sections are also presented.
- ³ AAD 20AH based on 139 fb⁻¹ of data. The last quoted uncertainty is due to the beam luminosity. The result is for $m_t = 172.5$ GeV and in agreement with the SM prediction of 832^{+20}_{-20} (scale) ± 35 (PDF+ α (s)) pb at NNLO+NNLL.
- 4 AAD 20Q reports 826.4 \pm 3.6 \pm 11.5 \pm 15.7 \pm 1.9 pb based on 36.1 fb $^{-1}$ of data at 13 TeV. The four errors stem from statistics, systematic effects, luminosity, and beam energy, respectively. We have combined luminosity and beam energy uncertainties in quadrature. The result is in agreement with the SM prediction 832 $^{+20}_{-29}(\text{scale})\pm$ 35(PDF+ $\alpha(\text{s})$) pb at NNLO+NNLL for $m_t=$ 172.5 GeV .
- ⁵ SIRUNYAN 20V based on 35.9 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. The last uncertainty is due to beam luminosity. The $t\bar{t}$ production cross section is measured in the $t\bar{t} \rightarrow (\ell \nu_{\ell})(\tau_h \nu_{\tau}) b\bar{b}$ final state, where τ_h refers to the hadronic decays of τ . The result is for $m_t = 172.5$ GeV and in agreement with the SM prediction at NNLO+NNLL.
- ⁶ SIRUNYAN 19AR based on 35.9 fb⁻¹ of data. Obtained from the visible cross section measured using a template fit to multidifferential distributions categorized according to the *b*-tagged jet multiplicity. The result is for $m_t = 172.5$ GeV and in agreement with the SM prediction at NNLO+NNLL.
- ⁷ SIRUNYAN 19P reports differential $t\bar{t}$ cross sections measured using dilepton events at 13 TeV with 35.9 fb⁻¹ and compared to NLO predictions.
- 8 KHACHATRYAN 17N based on 2.2 fb $^{-1}$ of data. The last quoted uncertainty is due to the beam luminosity. This measurement supersedes that of KHACHATRYAN 16J.
- ⁹ SIRUNYAN 17W based on 2.2 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. Events are categorized according to the jet multiplicity and the number of *b*-tagged jets. A likelihood fit is performed to the event distributions to compare to the NNLO+NNLL prediction.
- 10 AABOUD 16R reported value 818 \pm 8 \pm 27 \pm 19 \pm 12 pb based on 3.2 fb $^{-1}$ of data. The four errors are from statistics, systematic, luminosity, and beam energy. We have combined the systematic uncertainties in quadrature. The result is in agreement with the SM prediction 832 $^{+20}_{-29}(\text{scale})\pm35(\text{PDF}+\alpha(\text{s}))$ pb at NNLO+NNLL for $m_t=172.5$ GeV .
- ¹¹ KHACHATRYAN 16J based on 43 pb⁻¹ of data. The last uncertainty is due to luminosity. The result is for $m_t = 172.5$ GeV and in agreement with the SM prediction $832^{+20}_{-29}(\text{scale})\pm35(\text{PDF}+\alpha(\text{s}))$ pb at NNLO+NNLL.

$t\overline{t}$ Production Cross Section in pp Collisions at $\sqrt{s} = 13.6$ TeV

VALUE (pb)	DOCUMENT		•	COMMENT
$\bullet \bullet \bullet$ We do not use the follow	ing data for avera	ages, fits,	limits,	etc. ● ● ●
$850 \pm 3 \pm 27$	¹ AAD	24	ATLS	e $^{\pm}\mu^{\mp}+1$ or 2 <i>b</i> -jets
¹ AAD 24 based on 29 fb ⁻¹ \pm 20 pb. The result is for of 924 $^{+32}_{-40}$ (scale+PDF+ α is also measured as 1.145 ; prediction of 1.238 $^{+0.063}_{-0.071}$ efficiency largely cancel in t	$m_t = 172.5 \text{ GeV}$ σ_s) pb. The ratio σ_s $\pm 0.003 \pm 0.021$ (scale+PDF+ α_s).	and in a of the $t \overline{t}$ \pm 0.002,	greemer to the 2 which i	nt with the SM prediction Z production cross section s consistent with the SM

$t\overline{t}$ Production Cross Section in Nucleus-Nucleus Collisions

$VALUE (\mu barn)$	DOCUMENT ID	TECN	COMMENT
• • • We do not use th	e following data f	or averages, f	its, limits, etc. • • •
$2.03 \substack{+0.71 \\ -0.64}$	¹ SIRUNYAN	20BC CMS	Pb-Pb collisions, dilepton + <i>b</i> -jets
$2.54 \substack{+0.84 \\ -0.74}$	² SIRUNYAN	20BC CMS	Pb-Pb collisions, dilepton only

 1 SIRUNYAN 20BC based on (1.7 \pm 0.1) nb $^{-1}$ of lead-lead collision data at a nucleonnucleon c.m. energy of 5.02 TeV. It makes use of the final-state dilepton kinematic properties together with requirements on the number of *b*-jets. The measured value is compatible with QCD predictions.

 $^2\,{\sf SIRUNYAN}$ 20BC based on (1.7 \pm 0.1) ${\sf nb}^{-1}$ of lead-lead collision data at a nucleonnucleon c.m. energy of 5.02 TeV. It makes use of the final-state dilepton kinematic properties alone. The measured value is compatible with QCD predictions.

$t\overline{t}$ $t\overline{t}$ Production Cross Section in pp Collisions at $\sqrt{s} = 8$ TeV

VALUE (fb)	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT
$\bullet \bullet \bullet$ We do not	use the follow	wing data for average	ges, fits, limit	s, etc. ● ● ●
<23	95	¹ AAD	15AR ATLS	$\ell + ot\!$
<70	95	² AAD	15by ATLS	$\geq 2ec{\ell} + ec{arepsilon}_T + \geq 2 ext{j} \; (\geq 1 \; b)$
<32	95	³ KHACHATRY.	14r CMS	$\ell + \not\!\! E_T + \geq$ 6j (\geq 2 <i>b</i>)

¹AAD 15AR based on 20.3 fb⁻¹ of data. A fit to H_T distributions in multi-channels classified by the number of jets and of *b*-tagged jets is performed. ²AAD 15BY based on 20.3 fb⁻¹ of data. A same-sign lepton pair is required. An excess over the SM prediction reaches 2.5 σ for hypotheses involving heavy resonances decaying into <u>t t t t</u>.

³Based on 19.6 fb⁻¹ of data, using a multivariate analysis to separate signal from back-grounds. About $\sigma(t\bar{t}t\bar{t}) = 1$ fb is expected in the SM.

$t \overline{t} t \overline{t}$ Production Cross Section in pp Collisions at $\sqrt{s} = 13$ TeV

VALUE (fb)	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT
$\bullet \bullet \bullet$ We do not us	e the follo	owing data for ave	rages, fits, lin	nits, etc. • • •
22.5^{+}_{-} $\begin{array}{c} 6.6\\ 5.5\end{array}$		¹ AAD	23BC ATLS	(same-sign 2 ℓ) or $\geq 3\ell$
17.7^+ $\begin{array}{c} 3.7+2.3\\ -3.5-1.9 \end{array}$		² HAYRAPETY	.23B CMS	(same-sign 2 ℓ), 3 ℓ , 4 ℓ
$36 \begin{array}{c} +12 \\ -11 \end{array}$		³ TUMASYAN	23AQ CMS	(0,1 ℓ) + ($\ell^\pm \ell^\mp$) channels
$17 \pm 4 \pm 3$		⁴ TUMASYAN	23AQ CMS	CMS combined
$26 \begin{array}{c} +17\\ -15\end{array}$		⁵ AAD	21BC ATLS	ℓ or $\ell^+\ell^-$ + jets
$24 \begin{array}{c} + 7 \\ - 6 \end{array}$		⁶ AAD	21BC ATLS	combination of $1\ell/2\ell(OS)$ and $2\ell(SS)/3\ell$
24 + 7 - 6		⁷ AAD	20AR ATLS	(same-sign 2 ℓ) or $\geq 3\ell+$ jets
12.6^{+}_{-} $\overset{5.8}{5.2}$		⁸ SIRUNYAN	20c CMS	(same-sign 2 ℓ) or 3 ℓ + jets
<47	95	⁹ AABOUD	19AP ATLS	$\ell + \ell^+ \ell^-$ channels

<49	95	¹⁰ AABOUD	19AP ATLS	combination of ATLAS
$13 \begin{array}{c} +11 \\ -9 \end{array}$		¹¹ SIRUNYAN	19CN CMS	combination of CMS
<48 <69	95 95	¹² SIRUNYAN ¹³ AABOUD	19CN CMS 18CE ATLS	$\ell + ext{jets}, \ \ell^+ \ \ell^- + ext{jets} \ ext{channels} \ \geq 2\ell(ext{same sign}) + ot\!$
$16.9^{+13.8}_{-11.4}$		¹⁴ SIRUNYAN	18BU CMS	$t \overline{t} t \overline{t} ightarrow$ (same sign 2ℓ or $\geq 3\ell$) + ≥ 4 j ($\geq 2b$)
<94	95	¹⁵ SIRUNYAN	17AB CMS	ℓ +jets, $\ell^+\ell^-$ +jets channels
<42	95	¹⁶ SIRUNYAN	17s CMS	(same sign 2 ℓ)+ $ ot\!\!\!/ E_T$ + \geq 2j

 1 AAD 23BC result is based on 140 fb $^{-1}$ of data. The result corresponds to observed significance of 6.1 $\sigma.$

- ² HAYRAPETYAN 23B based on 138 fb⁻¹ of data. Improvements include the identification of leptons and jets from *b* hadrons, and from the revised analysis strategy for the signal-background separation by application of machine learning techniques. The result corresponds to the observed significance of 5.6 σ and is in agreement with the NLO (QCD+EW) SM prediction of $13.4^{+1.0}_{-1.8}$ fb including soft-gluon emission corrections at the next-to-leading logarithmic accuracy.
- 3 TUMASYAN 23AQ based on up to 138 fb $^{-1}$ of data. The all-hadronic final state is included for the first time.
- ⁴ TUMASYAN 23AQ based on up to 138 fb⁻¹ of data. It combines earlier CMS results, giving the observed significance of 4.0σ .
- ⁵ AAD 21BC result is based on 139 fb⁻¹ of data. The events are categorized according to the number of jets and how likely to contain *b*-hadrons and a multivariate analysis is used to discriminate the signal from backgrounds. The result corresponds to observed significance of 1.9 σ .
- ⁶ AAD 21BC combines the results of the four-top-quark production cross section measured from the 1 ℓ /opposite-sign 2 ℓ channel with that from the same-sign 2 ℓ /3 ℓ channel (AAD 20AR). The result corresponds to observed significance of 4.7 σ and is consistent within 2.0 σ with the NLO (QCD+EW) SM prediction of 12.0 \pm 2.4 fb.
- ⁷ AAD 20AR based on 139 fb⁻¹ of data. Jet multiplicity, jet flavor and event kinematics are used in a multivariate analysis to discriminate the signal from backgrounds. The result corresponds to observed significance of 4.3σ and is consistent within 1.7σ with the NLO (QCD+EW) SM prediction of 12.0 ± 2.4 fb.
- ⁸ SIRUNYAN 20C based on 137 fb⁻¹ of data. Both cut-based and multivariate approaches are taken to discriminate the signal from backgrounds. The result is in agreement with the NLO (QCD+EW) SM prediction of $12.0^{+2.2}_{-2.5}$ fb. The measurement constrains the

top quark Yukawa coupling strength parameter to be $|Y_t/Y_t^{SM}| <$ 1.7 (95% CL). It is also used to constrain an oblique parameter of the Higgs boson. Superseded by HAYRAPETYAN 23B.

- 9 AABOUD 19AP based on 36.1 fb⁻¹ of data. The upper limit corresponds to 5.1 times the NLO SM cross section.
- 10 AABOUD 19AP limit from data combined with AABOUD 18CE. The upper limit corresponds to 5.3 times the NLO SM cross section. Also a limit on the four-top-quark contact interaction of $|C_{4t}|/\Lambda^2 < 1.9 \ {\rm TeV}^{-2}$ (95% CL) is obtained in an EFT model.
- ¹¹ SIRUNYAN 19CN based on 35.8 fb⁻¹ of data, combined with SIRUNYAN 18BU. The results are also interpreted in the effective field theory framework.
- ¹² SIRUNYAN 19CN based on 35.8 fb⁻¹ of data. A multivariate analysis using global event and jet propoerties is performed to discriminate from $t\bar{t}$ background.
- ¹³ AABOUD 18CE based on 36.1 fb⁻¹ of proton-proton data taken at $\sqrt{s} = 13$ TeV. Events including a same-sign lepton pair are used. The result is consistent with the NLO SM cross section of 9.2 fb.
- ¹⁴ SIRUNYAN 18BU based on 35.9 fb⁻¹ of proton-proton data taken at $\sqrt{s} = 13$ TeV. Yields from signal regions and control regions defined based on N_{jets} , N_b and N_l are

combined in a maximum-likelihood fit. The result is in agreement with the NLO SM prediction $9.2^{+2.9}_{-2.4}$ fb. The measurement constrains the top quark Yukawa coupling strength parameter to be $\left|Y_t/Y_t^{SM}\right| < 2.1$ (95% CL).

- ¹⁵ SIRUNYAN 17AB based on 2.6 fb⁻¹ of data. A multivariate analysis is used to discriminate between tttt signal and tt background. A combination with a previous search (CMS, KHACHATRYAN 16BJ) in the same-sign dilepton channel gives an upper limit of 69 fb (95% CL), corresponding to 7.4 (SM prediction).
- ¹⁶ SIRUNYAN 17s based on 35.9 fb⁻¹. The limit is in agreement with the NLO SM prediction $9.2^{+2.9}_{-2.4}$ fb. Superseded by SIRUNYAN 18BU. The signal events are also used to constrain various new physics models.

$t \overline{t} W$ Production Cross Section in pp Collisions at $\sqrt{s} = 8$ TeV

VALUE (fb)	DOCUMENT ID	TECN	COMMENT
$\bullet \bullet \bullet$ We do not use the follo	wing data for averages,	fits, lim	its, etc. ● ● ●
$170^{+90}_{-80}\pm70$	¹ KHACHATRY14N	CMS	$t\overline{t}W o$ same sign dilepton + $ ot\!$

¹Based on 19.5 fb⁻¹ of data. The result is consistent with the SM prediction of $\sigma(t\bar{t}W) = 206^{+21}_{-23}$ fb.

$t \overline{t} W$ Production Cross Section in pp Collisions at $\sqrt{s} = 13$ TeV

VALUE (pb)	DOCUMENT ID	TECN	COMMENT		
• • • We do not use the following data for averages, fits, limits, etc. • • •					
$\begin{array}{rrrr} 0.868 \pm 0.040 \pm 0.051 \\ 0.87 \ \pm 0.13 \ \pm 0.14 \\ 0.77 \ \begin{array}{r} +0.12 \ +0.13 \\ -0.11 \ \ -0.12 \end{array}$	¹ TUMASYAN ² AABOUD ³ SIRUNYAN	19AR ATLS	2 or 3 $\ell + \not\!\!\!E_T$ + jets 2,3,4 $\ell + \not\!\!\!E_T$ + jets $t \overline{t} W \rightarrow$ same sign dilepton $+ \not\!\!\!E_T$ + jets		

¹ TUMASYAN 23AN result is based on 138 fb⁻¹ of proton-proton data. The $t\bar{t}W^+$ and $t\bar{t}W^-$ production cross sections, respectively, are measured as $0.553 \pm 0.030 \pm 0.030$ pb and $0.343 \pm 0.026 \pm 0.025$ pb. The results are within 2σ deviations from the NLO FxFx SM predictions, $0.592^{+0.155}_{-0.097}$ pb $(t\bar{t}W)$, $0.384^{+0.053}_{-0.033}$ pb $(t\bar{t}W^+)$ and $0.198^{+0.026}_{-0.017}$

pb $(t\overline{t}W^{-})$.

- ² AABOUD 19AR result is based on 35.9 fb⁻¹ of data. $t\overline{t}W$ and $t\overline{t}Z$ cross sections are simultaneously measured using a combined fit to the events divided into multiple regions. The result is consistent with the SM prediction at NLO $0.60^{+0.08}_{-0.07}$ pb. It is also used to constrain the Wilson coefficients for dimension-six operators which modify the $t\overline{t}Z$ vertex.
- ³SIRUNYAN 18BS result is based on 35.9 fb⁻¹ of proton-proton data taken at \sqrt{s} = 13 TeV. The result is consistent with the SM prediction and is used to constrain the Wilson coefficients for dimension-six operators describing new interactions. The result is consistent with the SM prediction at NLO 0.628 ± 0.082 pb.

$t \overline{t} Z$ Production Cross Section in pp Collisions at $\sqrt{s} = 8$ TeV

VALUE (fb)	DOCUMENT ID	TECN	COMMENT
$\bullet \bullet \bullet$ We do not use the follow	ving data for averages,	fits, limi	ts, etc. ● ● ●
$200 {+80 +40 \atop -70 -30}$	¹ KHACHATRY14N	CMS	$t\overline{t}Z o 3$,4 $\ell + ot\!$
1 Based on 19.5 fb ${}^{-1}$ of dat $= 197 {}^{+22}_{-25}$ fb.	a. The result is consist	ent with	the SM prediction of $\sigma(t \overline{t} Z)$

https://pdg.lbl.gov Page 54 Created: 7/25/2024 17:21

$t\overline{t}Z$ Production Cross Section in f	<i>p</i> p Collisions at $\sqrt{s} = 13$ TeV
--	--

VALUE (pb)	DOCUMENT ID	TECN	COMMENT
$\bullet \bullet \bullet$ We do not use the feature	ollowing data for a	verages, fits, li	mits, etc. • • •
$0.99\!\pm\!0.05\!\pm\!0.08$	¹ AAD	21AS ATLS	$3,4\ell+jets$
$0.95\!\pm\!0.05\!\pm\!0.06$	² SIRUNYAN	20AB CMS	$3,4\ell+jets$
$0.95\!\pm\!0.08\!\pm\!0.10$	³ AABOUD	19ar ATLS	2,3,4 $\ell+ ot\!$
$0.99\substack{+0.09 + 0.12 \\ -0.08 - 0.10}$	⁴ SIRUNYAN	18BS CMS	$t\overline{t}Z ightarrow$ 3,4 $\ell + ot\!$

 1 AAD 21AS based on 139 fb $^{-1}$ of data. The result is consistent with the SM prediction of $0.88\substack{+0.09\\-0.10}$ pb which includes NLO QCD+EW corrections. Also overall the differential cross sections are in good agreement with the SM predictions.

² SIRUNYAN 20AB based on 77.5 fb⁻¹ of data at 13 TeV. The result is consistent with the NLO SM prediction of 0.84 \pm 0.10 pb. Differential cross sections are measured and used to constrain the anomalous couplings and Wilson coefficients for the $t\bar{t}Z$ interaction.

to constrain the anomalous couplings and Wilson coefficients for the $t\overline{t}Z$ interaction. ³ AABOUD 19AR based on 35.9 fb⁻¹ of data. $t\overline{t}W$ and $t\overline{t}Z$ cross sections are simultaneously measured using a combined fit to the events divided into multiple regions. The result is consistent with the SM prediction at NLO $0.88^{+0.09}_{-0.11}$ pb. It is also used to constrain the Wilson coefficients for dimension-six operators which modify the $t\overline{t}Z$ vertex.

⁴ Based on 35.9 fb⁻¹ of proton-proton data taken at $\sqrt{s} = 13$ TeV. The result is consistent with the SM prediction and is used to constrain the Wilson coefficients for dimension-six operators describing new interactions. The result is consistent with the SM prediction at NLO 0.839 \pm 0.101 pb.

$t \overline{t} \gamma$ Production Cross Section in pp Collisions at $\sqrt{s} = 13$ TeV

VALUE (pb)	DOCUMENT ID	TECN	COMMENT
• • • We do not use the	e following data for averages	s, fits, limits,	etc. • • •
	¹ TUMASYAN ² TUMASYAN ³ AABOUD	21H CMS	
	neasured fiducial inclusive a $138~{ m fb}^{-1}$ of data. The		

 $t\overline{t}\gamma$ at 13 TeV with 138 fb⁻¹ of data. The results are in agreement with the SM predictions. The results are used to constrain anomalous couplings of the top quark in the SMEFT framework.

²TUMASYAN 21H measured fiducial inclusive and differential cross-sections for $pp \rightarrow t\bar{t}\gamma$ at 13 TeV with 137 fb⁻¹ of data. The results are in agreement with the SM predictions. The results are used to constrain anomalous couplings of the top quark in the SMEFT framework.

³AABOUD 19AD measured fiducial inclusive and differential cross-sections for $pp \rightarrow t\bar{t}\gamma$ at 13 TeV with 36.1 fb⁻¹ of data. The results are in agreement with the theoretical predictions.

f(Q₀): $t\overline{t}$ Fraction of Events with a Veto on Additional Central Jet Activity in pp Collisions at $\sqrt{s} = 7$ TeV

Q_0 denotes the threshold of the additional jet p_T .				
VALUE (%)	DOCUMENT ID TECN	COMMENT		
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$				
$80.0 \pm 1.1 \pm 1.6$ $92.0 \pm 0.7 \pm 0.8$ $98.0 \pm 0.3 \pm 0.3$	¹ CHATRCHYAN 14AE CMS ¹ CHATRCHYAN 14AE CMS ¹ CHATRCHYAN 14AE CMS	$\begin{array}{l} Q_0 = 75 \text{GeV} (y < \! 2.4) \\ Q_0 \! = 150 \text{GeV} (y < \! 2.4) \\ Q_0 \! = 300 \text{GeV} (y < \! 2.4) \end{array}$		

$56.4 \pm 1.3 {+2.6 \atop -2.8}$	² AAD	12BL ATLS	$Q_0=25~GeV~(\left y ight <\!2.1)$
$84.7 \pm 0.9 \pm 1.0$	² AAD	12BL ATLS	$\textbf{Q}_0=75~\text{GeV}~(\left \textbf{y}\right <\!\!2.1)$
$95.2^{+0.5}_{-0.6}\pm0.4$	² AAD	12BL ATLS	$Q_0 = 150 \text{ GeV} (y < 2.1)$

¹ CHATRCHYAN 15 based on 5.0 fb⁻¹ of data. The $t\bar{t}$ events are selected in the dilepton and lepton + jets decay channels. For other values of Q₀ see Table 5.

²Based on 2.05 fb⁻¹ of data. The $t\overline{t}$ events are selected in the dilepton decay channel with two identified *b*-jets.

Fraction of $t\bar{t}$ + multi-jet Events in pp Collisions at $\sqrt{s} = 7$ TeV

VALUE	DOCUMENT ID	TECN	COMMENT
• • • We do not use t	he following data for av	erages, fi	ts, limits, etc. ● ● ●
	¹ AAD 15D	ATLS	$\ell + \not \! E_T$ + nj (n=3 to 8)
0.332 ± 0.090	² CHATRCHYAN 14A		$t\overline{t}(\ellar{\ell})+$ 0 jet ($E_T>$ 30GeV)
$0.436 \!\pm\! 0.098$	² CHATRCHYAN 14A	E CMS	$t\overline{t}(\ell\ell)+1$ jet ($\overline{E_T}>$ 30GeV)
$0.232\!\pm\!0.125$	² CHATRCHYAN 14A	E CMS	$t \overline{t}(\ell \ell) + \geq 2 \operatorname{jet} (E_T > 30 \mathrm{GeV})$

¹ Based on 4.6 fb⁻¹ of data. Fiducial $t\bar{t}$ production cross section is presented as a function of the jet multiplicity for up to eight jets with the jet p_T threshold of 25, 40, 60, and 80 GeV, and as a function of jet p_T up to the 5th jet. MC models can be discriminated by using data for high jet multiplicity and by p_T distributions of the leading and 5th jet.

² Based on 5.0 fb⁻¹ of data. Events with two oppositely charged leptons, large \mathbb{Z}_T and jets with at least 1 *b*-tag are used to measure the fraction of $t\bar{t}$ plus additional jets. The gap fraction (n=0 jet rate) as a function of the jet p_T and that of H_T , the scalar sum of the p_T 's of additional jets, is shown in Fig. 8.

$t \overline{t}$ Charge Asymmetry (A_C) in pp Collisions at $\sqrt{s} = 7$ TeV

 $\begin{array}{l} \mathsf{A}_{C} = (\mathsf{N}(\Delta|\mathsf{y}| > 0) - \mathsf{N}(\Delta|\mathsf{y}| < 0)) / (\mathsf{N}(\Delta|\mathsf{y}| > 0) + \mathsf{N}(\Delta|\mathsf{y}| < 0)) \text{ where } \Delta|\mathsf{y}| \\ = |\mathsf{y}_{t}| - |\mathsf{y}_{\overline{t}}| \text{ is the difference between the absolute values of the top and antitop rapidities and N is the number of events with } \Delta|\mathsf{y}| \text{ positive or negative.} \end{array}$

VALUE (%)	DOCUMENT ID	TECN	COMMENT
• • • We do not use the followi	ing data for averag	ges, fits, limits	s, etc. ● ● ●
$0.5 \pm 0.7 \pm 0.6$	¹ AABOUD	18AM LHC	ATLAS+CMS combina- tion (lepton + jets)
$2.1\!\pm\!2.5\!\pm\!1.7$	² AAD	15aj ATLS	$\ell\ell + \not\!$
0.6 ± 1.0	³ AAD	14I ATLS	$\ell + \not\!\! E_T + \geq$ 4j (\geq 1b)
$-1.0\!\pm\!1.7\!\pm\!0.8$	⁴ CHATRCHYAN	14D CMS	$\ell\ell + ot\!$
$-1.9\!\pm\!2.8\!\pm\!2.4$	⁵ AAD	12bk ATLS	$\ell + ot\!$
$0.4 \pm 1.0 \pm 1.1$	⁶ CHATRCHYAN	12BB CMS	$\ell + \not\!$
$-1.3{\pm}2.8{+2.9\atop-3.1}$	⁷ CHATRCHYAN	12BS CMS	$\ell + ot\!$

¹ ATLAS and CMS combination based on the data of AAD 14I and CHATRCHYAN 12BB. It takes into account the correlations of the measurements and systematic errors. The result is in agreement with the SM prediction (NLO QCD + NLO EW).

² AAD 15AJ based on 4.6 fb⁻¹ of data. After kinematic reconstruction the top quark momenta are corrected for detector resolution and acceptance effects by unfolding, using parton level information of the MC generators. The lepton charge asymmetry is measured as $A_C^{\ell} = 0.024 \pm 0.015 \pm 0.009$. All the measurements are consistent with the SM predictions.

- 3 Based on 4.7 fb $^{-1}$ of data. The result is consistent with the SM prediction of A $_C$ = 0.0123 \pm 0.0005. The asymmetry is 0.011 \pm 0.018 if restricted to those events where $\beta_Z(t\bar{t}) > 0.6$, which is also consistent with the SM prediction of 0.020 + 0.006 - 0.007
- 4 Based on 5.0 fb $^{-1}$ of data. The lepton charge asymmetry is measured as A $_C^\ell =$ 0.009 \pm 0.0010 \pm 0.006. A^{ℓ}_C dependences on $m_{t\bar{t}}$, $|y(t\bar{t})|$, and $p_T(t\bar{t})$ are given in Fig. 5. All measurements are consistent with the SM predictions.
- $^5\,{\rm Based}$ on 1.04 fb $^{-1}$ of data. The result is consistent with A $_C$ = 0.006 \pm 0.002 (MC at NLO). No significant dependence of A $_C$ on $m_{t\,\overline{t}}$ is observed.

 6 Based on 5.0 fb $^{-1}$ of data at 7 TeV. 7 Based on 1.09 fb $^{-1}$ of data. The result is consistent with the SM predictions.

tt Charge Asymmetry (A _C) in pp Collisions at $\sqrt{s} = \delta$ lev					
VALUE (%)	DOCUMENT ID	TECN	COMMENT		
$\bullet \bullet \bullet$ We do not use the follow	owing data for ave	erages, fits, lir	nits, etc. • • •		
$0.55\!\pm\!0.23\!\pm\!0.25$	¹ AABOUD	18AM LHC	ATLAS+CMS combination (lepton + jets)		
2.1 ± 1.6	² AAD	16AE ATLS	$\ell\ell + E_T + \geq 2j$		
0.9 ± 0.5	³ AAD		$\ell + \not\!\! E_T + \ge 4j$		
4.2 ±3.2	⁴ AAD	16⊤ ATLS	$m_{t \overline{t}} > 0.75$ TeV, $ y_t -$		
			$ y_{\overline{t}} < 2, \ \ell + \not\!\!\! E_T + jets$		
$1.1 \ \pm 1.1 \ \pm 0.7$	⁵ KHACHATRY		$\ell\ell + E_T + \geq 2 { m j} \; (\geq 1 { m b})$		
$0.33\!\pm\!0.26\!\pm\!0.33$	⁶ KHACHATRY.		$\ell + \not\!\!\! E_T + \geq$ 4j (\geq 1b)		
$0.10\!\pm\!0.68\!\pm\!0.37$	⁷ KHACHATRY	16⊤ CMS	$\ell + ot\!$		

$t\overline{t}$ Charge Asymmetry (A_G) in *pp* Collisions at $\sqrt{s} = 8$ TeV

- 1 ATLAS and CMS combination based on the data of AAD 16AZ and KHACHA-TRYAN 16AH. It takes into account the correlations of the measurements and systematic errors. A combination of the differential measurements of the charge asymmetry is also presented. The results are in agreement with the SM prediction (NNLO QCD + NLOEW).
- 2 AAD 16AE is based on 20.3 fb $^{-1}$ of data. After kinematic reconstruction, the top quark momenta are corrected for detector resolution and acceptance effects by unfolding, using parton level information of the MC generators. The lepton charge asymmetry is measured as $A_C^{\ell\ell} = 0.008 \pm 0.006$. All the measurements are consistent with the SM predictions.
- 3 AAD 16AZ based on 20.3 fb $^{-1}$ of data. All the differential and inclusive measurements are statistically limited and consistent with the SM predictions.
- 4 AAD 16T based on 20.3 fb $^{-1}$ of data. Uses reconstruction techniques for the decay topology of highly boosted top quarks. The observed asymmetry is transformed by unfolding to a parton-level result in the shown fiducial region. The result is consistent with the NLO SM prediction.
- 5 KHACHATRYAN 16AD based on 19.5 fb $^{-1}$ of data. The lepton charge asymmetry is measured as A_{C}^{\ell\ell} = 0.003 \pm 0.006 \pm 0.003. All the measurements are consistent with the SM predictions.
- 6 KHACHATRYAN 16AH based on 19.6 fb $^{-1}$ of data. The same data set as in KHACHA-TRYAN 16T is used. A template technique is used, which is sensitive to the charge anti-symmetric component of the $t\overline{t}$ rapidity distributions and statistically advantageous. The result is consistent with the SM predictions.
- 7 KHACHATRYAN 16T based on 19.7 fb $^{-1}$ of data. The same data set as in KHACHA-TRYAN 16AH is used. After kinematic reconstruction the top quark momenta are corrected for detector resolution and acceptance effects by unfolding, using parton level information of the MC generators. All the measurements are consistent with the SM predictions.

$t \overline{t}$ Charge Asymmetry (A_C) in pp Collisions at $\sqrt{s} = 13$ TeV

VALUE (%)	DOCUMENT ID	TECN	COMMENT
• • • We do not use the	e following data fo	or averages, fit	s, limits, etc. ● ●
0.68 ± 0.15	¹ AAD	23ba ATLS	single lepton $+$ dilepton channels
$0.42 \substack{+0.64 \\ -0.69}$	² TUMASYAN	23BD CMS	$M_{t \overline{t}} > 750 \text{GeV}$, single- ℓ channel

¹ AAD 23BA is based on 139 fb⁻¹ of data. Inclusive $t\bar{t}$ charge asymmetry is measured to be nonzero with 4.7 σ significance. Also differential $t\bar{t}$ as well as lepton charge asymmetries are measured. All the results are consistent with the SM predictions which include NNLO QCD + NLO EW corrections.

²TUMASYAN 23BD is based on 138 fb⁻¹ of data. $t\overline{t}$ charge asymmetry for highly Lorentz-boosted top quarks is measured and is in agreement with the NNLO QCD + NLO EW corrected SM prediction of $0.94 \substack{+0.05 \\ -0.07}$ %. The event selection is optimized for highly-boosted top quarks.

$t \overline{t} W$ leptonic Charge Asymmetry (A^{ℓ}_C) in pp Collisions at $\sqrt{s} = 13$ TeV

VALUE	DOCUMENT ID	TECN	COMMENT	
• • • We do not use the follow	ving data for averages, fits	. limits.	etc. • • •	

 $-0.12 \pm 0.14 \pm 0.05$ ¹ AAD 23AA ATLS $\ell \ell \ell + \geq 1b$

 1 AAD 23AA is based on 139 fb $^{-1}$ of data. The charge-asymmetry in a fiducial volume at particle level is also reported at $-0.11\pm0.17\pm0.05$. All the results are consistent with the SM predictions which include NLO QCD + NLO EW corrections.

$t \overline{t} \gamma$ Charge Asymmetry (A_C) in pp Collisions at $\sqrt{s} = 13$ TeV

VALUE	•	•	<u> </u>		OCUMEN	T ID	TECN	COMMENT	
• • • V	/e do no	t use the	e followi	ng dat	a for ave	rages, fits,	limits, e	etc. • • •	
-0.003	± 0.029			1д	AD	23AV	/ ATLS	$\gamma \ell + \geq$ 4j (\geq 1 <i>b</i>)	
¹ даг) 23AW i	s based	on 139	$_{\rm fb}-1$	of data	The meas	irement	is in agreement with t	he

 $^1\,\rm AAD$ 23AW is based on 139 $\rm fb^{-1}$ of data. The measurement is in agreement with the Standard Model expectation.

t-quark Polarization in $t \overline{t}$ Events in $p \overline{p}$ Collisions at $\sqrt{s} = 1.96$ TeV

VALUE	<u>DOCUMENT ID</u>		TECN	COMMENT
$\bullet \bullet \bullet$ We do not use the f	ollowing data for	average	es, fits,	limits, etc. • • •
0.070 ± 0.055	¹ ABAZOV	17	D0	$\ell {+} ot\!$
-0.102 ± 0.061	² ABAZOV	17	D0	$\ell + E_T + \geq 3$ j $(\geq 1b)$
0.040 ± 0.035	³ ABAZOV	17	D0	$\ell + { ot\!$
$0.113\!\pm\!0.091\!\pm\!0.019$	⁴ ABAZOV	15K	D0	A_{FB}^{ℓ} in $\ell\ell\!+\! ot\!$

 $^1\,\text{ABAZOV}$ 17 based on 9.7 fb $^{-1}$ of data. The value is top quark polarization times spin analyzing power in the beam basis. Combination with the result of ABAZOV 15K yields 0.081 \pm 0.048. This result together with the helicity polarization is shown in a 2-dimensional plot in Fig.4. These results are consistent with the SM prediction.

²ABAZOV 17 based on 9.7 fb⁻¹ of data. The value is top quark polarization times spin analyzing power in the helicity basis. The result is consistent with the SM prediction. This result together with the beam polarization is shown in a 2-dimensional plot in Fig.4.

 3 ABAZOV 17 based on 9.7 fb $^{-1}$ of data. The value is top quark polarization times spin analyzing power in the transverse basis. The result is consistent with the SM prediction.

⁴ABAZOV 15K based on 9.7 fb⁻¹ of data. The value is top quark polarization times spin analyzing power in the beam basis. The result is consistent with the SM prediction of -0.0019 ± 0.0005 .

t-quark Polarization in $t \overline{t}$ Events in pp Collisions at $\sqrt{s} = 7$ TeV

The double differential distribution in polar angles, θ_1 (θ_2) of the decay particle of the top (anti-top) decay products, is parametrized as $(1/\sigma)d\sigma/(d\cos\theta_1 d\cos\theta_2) = (1/4)$ ($1 + A_t \cos\theta_1 + A_{\overline{t}} \cos\theta_2 - C \cos\theta_1 \cos\theta_2$). The charged lepton is used to tag t or \overline{t} . The coefficient A_t and $A_{\overline{t}}$ measure the average helicity of t and \overline{t} , respectively. $A_{CPC} = A_t = A_{\overline{t}}$ assumes *CP* conservation, whereas $A_{CPV} = A_t = -A_{\overline{t}}$ corresponds to maximal *CP* violation.

VALUE	DOCUMENT ID	DESTIMATION COMMENT	
• • • We do not use the followi	ng data for averag	ges, fits, limits, etc. • • •	
$-0.035\!\pm\!0.014\!\pm\!0.037$	¹ AAD	13BE ATLS A $_{CPC}$	
$0.020 \!\pm\! 0.016 \! \substack{+0.013 \\ -0.017}$	¹ AAD	13be ATLS A_{CPV}	

¹Based on 4.7 fb⁻¹ of data using the final states containing one or two isolated electrons or muons and jets with at least one *b*-tag.

t-quark Polarization in $t \bar{t}$ Events in pp Collisions at $\sqrt{s} = 8$ TeV

 ${\rm A}_t,~{\rm A}_{\overline{t}},~{\rm A}_{CPC},~{\rm A}_{CPV},$ and ${\rm A}_C$ are defined in header texts in the subsections, just above.

VALUE	DOCUMENT ID	TECN	COMMENT
$\bullet \bullet \bullet$ We do not use the follow	ving data for averages	, fits, limits,	etc. ● ● ●
$-0.044\!\pm\!0.038\!\pm\!0.027$		17G ATLS	
$-0.064\!\pm\!0.040\!\pm\!0.027$	¹ AABOUD	17G ATLS	$A_{\overline{t}}$
$0.296\!\pm\!0.093\!\pm\!0.037$	¹ AABOUD	17G ATLS	A_C
-0.022 ± 0.058	² KHACHATRY.	16AI CMS	A_{CPC}
0.000 ± 0.016	² KHACHATRY.	16AI CMS	A_{CPV}
_	-		

¹ AABOUD 17G based on 20.2 fb⁻¹ of pp data, using events with two leptons and two or more jets with at least one *b*-tag. Determined from measurements of 15 top quark spin observables. The second error corresponds to a variation of m_t about 172.5 GeV by 0.7 GeV. The values are consistent with the NLO SM predictions.

² KHACHATRYAN 16AI based on 19.5 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV, using events with two leptons and two or more jets with at least one *b*-tag. Determined from the lepton angular distributions as a function of the $t\bar{t}$ -system kinematical variables.

t-quark Polarization in Single Top Events in pp Collisions at $\sqrt{s} = 8$ TeV

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
• • • We do not use	the follow	ving data for avera	ges, fits, limi	ts, etc. ● ● ●
>0.72	95	¹ AABOUD		$lpha_\ell P$; t-channel
$0.97\!\pm\!0.05\!\pm\!0.11$		² AABOUD	171 ATLS	$\alpha_{\ell} P$; t-channel
$0.25\!\pm\!0.08\!\pm\!0.14$		³ AABOUD	171 ATLS	$(\dot{F}_{+}+F_{-})P$; t-channel
$0.26\!\pm\!0.03\!\pm\!0.10$		⁴ KHACHATRY.	16B0 CMS	$(\alpha_{\mu}P)/2$; t-channel

¹AABOUD 17BB based on 20.2 fb⁻¹ of pp data. Triple-differential decay rate of top quark is used to simultaneously determine five generalized W t b couplings as well as the top polarization. α_{ℓ} denotes the spin analyzing power of charged lepton, and the spin axis of the top polarization P is taken along the spectator-quark momentum in the top rest frame. The value is compatible with the SM prediction of about 0.9.

² AABOUD 17I based on 20.2 fb⁻¹ of *pp* data. A cut-based analysis is used to discriminate between signal and backgrounds. α_{ℓ} denotes the spin analyzing power of charged lepton, and the spin axis of the top polarization *P* is taken along the spectator-quark momentum in the top rest frame. See this paper for a number of other asymmetries and measurements that are not included here.

- ³AABOUD 17I based on 20.2 fb⁻¹ of pp data. A cut-based analysis is used to discriminate between signal and backgrounds. F_{\pm} denotes W helicity fraction, and the spin axis of the top polarization P is taken along the spectator-quark momentum in the top rest frame. See this paper for a number of other asymmetries and measurements that are not included here.
- ⁴ KHACHATRYAN 16BO based on 19.7 fb⁻¹ of data. A high-purity sample with a muon is selected by a multivariate analysis. The value is the top spin asymmetry, given by one half of the spin analyzing power α_{μ} (=1 at LO of SM) times the top polarization, *P*, where the spin axis is defined as the direction of the untagged jet in the top rest frame. The value is compatible with the SM prediction of 0.44 with a 2.0 σ deviation.

t-quark Polarization in Single Top Events in pp Collisions at $\sqrt{s} = 13$ TeV

VALUE	DOCUMENT ID		TECN	COMMENT
• • • We do not use th	e following data for	averag	es, fits,	limits, etc. ● ● ●
$0.01 \ \pm 0.18$	¹ AAD	22Z	ATLS	$P_{\mathbf{x}'}$ (t, transverse component)
-0.029 ± 0.027	¹ AAD			$P_{v'}^{\uparrow}$ (t, normal component)
$0.91 \hspace{0.1 cm} \pm 0.10$	¹ AAD			$P_{z'}$ (t, parallel component)
-0.02 ± 0.20	¹ AAD	22Z	ATLS	$P_{x'}$ (\overline{t} , transverse component)
$-0.007\!\pm\!0.051$	¹ AAD	22Z	ATLS	$P_{v'}^{\uparrow}$ (\overline{t} , normal component)
$-0.79 \ \pm 0.16$	¹ AAD			$P_{z'}$ (\overline{t} , parallel component)
$0.440\!\pm\!0.070$	² SIRUNYAN			$(\alpha_{\ell} P)/2$; t-channel

¹AAD 22Z based on 139 fb⁻¹ of data. Three components of t or \overline{t} polarization vector (defined in the t or \overline{t} rest frame) are measured in t-channel single top production using ℓ momentum distribution in the $\ell + \not{E}_T + 2j$ (with 1 of them b-jet) channel. The measured values are in agreement with NNLO SM prediction. Constraints on the Wilson coefficients of SMEFT are obtained as $-0.9 < C_{tW} < 1.4$ and $-0.8 < C_{itW} < 0.2$.

² SIRUNYAN 20R based on 36.1 fb⁻¹ of data. Differential cross sections for *t*-channel single top production are measured using $1\ell + 2,3$ -jet mode and found to be in good agreement with SM predictions. The value is the top spin asymmetry, given by 1/2 of the spin analyzing power α_{ℓ} (=1 at LO of SM) times the top polarization *P*, where the spin axis is defined as the direction of the spectator quark in the top rest frame at the parton level. It is in good agreement with the NLO SM prediction of 0.436.

$gg \rightarrow t \overline{t}$ Fraction in $p\overline{p}$ Collisions at $\sqrt{s} = 1.96$ TeV

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
• • • We do not ι	ise the followi	ng data for avera	ges, fits, limits	, etc. ● ● ●
<0.33	68	¹ AALTONEN		
$0.07\!\pm\!0.14\!\pm\!0.0$	7	² AALTONEN	08AG CDF	low p_T number of tracks
	ı —1			

¹ Based on 955 pb⁻¹. AALTONEN 09F used differences in the $t\overline{t}$ production angular distribution and polarization correlation to descriminate between $gg \rightarrow t\overline{t}$ and $q\overline{q} \rightarrow t\overline{t}$ subprocesses. The combination with the result of AALTONEN 08AG gives 0.07 + 0.15 - 0.07.

² Result is based on 0.96 fb⁻¹ of data. The contribution of the subprocesses $gg \rightarrow t\bar{t}$ and $q\bar{q} \rightarrow t\bar{t}$ is distinguished by using the difference between quark and gluon initiated jets in the number of small p_T (0.3 GeV < p_T < 3 GeV) charged particles in the central region ($|\eta| < 1.1$).

A_{FB} of $t \overline{t}$ in $p \overline{p}$ Collisions at $\sqrt{s} = 1.96$ TeV

$A_{FB} = Forward$	-backward asymmetry	etry.		
VALUE (%)	DOCUMENT ID		TECN	COMMENT
• • • We do not use th	e following data f	or ave	rages, fit	ts, limits, etc. • • •
$12.8 \pm \ 2.1 \pm 1.4$				CDF, D0 combination
$17.5\pm\ 5.6{\pm}3.1$	² ABAZOV	15K	D0	A_{FB}^\ell in $\ell\ell + ot\!$
https://pdg.lbl.gov	Pag	e 60		Created: 7/25/2024 17:21

7.2± 6.0	³ AALTONEN	14F CDF	A_{FB}^ℓ in dilepton channel
7.6± 8.2	³ AALTONEN	14F CDF	$egin{aligned} & (ar{\ell}\ell+ ot\!$
$4.2 \pm \ 2.3 {+1.7 \atop -2.0}$	⁴ ABAZOV	14G D0	A_{FB}^ℓ $(\ell+ ot\!$
$10.6\pm$ 3.0	⁵ ABAZOV	14H D0	$A_{FB} \; (\ell + \not\!\! E_T \; + \; \geq$ 3j (\geq 1 <i>b</i>))
$20.1\pm$ 6.7	⁶ AALTONEN	13AD CDF	a_1/a_0 in $\ell + \not E_T + \ge 4j$ ($\ge 1b$)
$-$ 0.2 \pm 3.1	⁶ AALTONEN	13AD CDF	a_3, a_5, a_7 in $\ell + \not\!\!\! E_T + \ge 4$ j ($\ge 1b$)
$16.4\pm$ 4.7	⁷ AALTONEN	13s CDF	$\ell + E_T + \ge$ 4 jets(\ge 1 <i>b</i> -tag)
$9.4^+_{-2.9}$	⁸ AALTONEN	13X CDF	$\ell + ot\!$
$11.8\pm$ 3.2	⁹ ABAZOV	13A D0	$\ell\ell \& \ell+$ jets comb.
-11.6 ± 15.3	¹⁰ AALTONEN	11F CDF	$m_t \overline{t} < 450 \text{ GeV}$
47.5 ± 11.4	¹⁰ AALTONEN	11F CDF	$m_t \frac{1}{t} > 450 \text{ GeV}$
$19.6\pm$ 6.5	¹¹ ABAZOV	11AH D0	$\ell + ot\!$
17 ± 8	¹² AALTONEN	08AB CDF	$p\overline{p}$ frame
24 ± 14	¹² AALTONEN	08AB CDF	t T frame
12 \pm 8 ± 1	¹³ ABAZOV	08L D0	$\ell + ot\!$
1	-		

¹AALTONEN 18 based on 9–10 fb⁻¹ of $p\overline{p}$ data at $\sqrt{s} = 1.96$ TeV. The value is the asymmetry in the number of reconstructed $t\overline{t}$ events with rapidity $y_t > y_{\overline{t}}$ and those with $y_t < y_{\overline{t}}$. The combined fits to CDF and D0 single lepton and $\ell\ell$ asymmetries give $A_{FB}^{\ell} = 0.073 \pm 0.016 \pm 0.012$ and $A_{FB}^{\ell \ell} = 0.108 \pm 0.043 \pm 0.016$, respectively. The results are consistent with the SM predictions. ² ABAZOV 15K based on 9.7 fb⁻¹ of data. The result is consistent with the SM predictions. By combining with the previous D0 measurement in the ℓ + jet channel

- ABAZOV 14H, $A_{FB}^\ell =$ 0.118 \pm 0.025 \pm 0.013 is obtained.
- ³AALTONEN 14F based on 9.1 fb⁻¹ of data. A_{FB}^{ℓ} and $A_{FB}^{\ell\ell}$ denote, respectively, the asymmetries $(N(x>0)-N(x<0))/N_{tot}$ for $x=q_{\ell}\eta_{\ell}$ (q_{ℓ} is the charge of ℓ) and $x=\eta_{\ell^+}-\eta_{\ell^-}$. Both results are consistent with the SM predictions. By combining with the previous CDF measurement in the ℓ +jet channel AALTONEN 13X, $A_{FB}^{\ell} = 0.098 + 0.028 - 0.026$ is obtained. The combined result is about two sigma larger than the SM prediction of $A_{FB}^{\ell} = 0.038 \pm 0.003.$
- $^4\,\textsc{Based}$ on 9.7 fb $^{-1}$ of $p\,\overline{p}$ data at \sqrt{s} = 1.96 TeV. The asymmetry is corrected for the production level for events with $|y_l| < 1.5$. Asymmetry as functions of $E_T(\ell)$ and $|y_l|$ are given in Figs. 7 and 8, respectively. Combination with the asymmetry measured in the dilepton channel [ABAZOV 13P] gives $A_{FB}^{\ell} = 4.2 \pm 2.0 \pm 1.4$ %, in agreement with the SM prediction of 2.0%.
- ⁵ Based on 9.7 fb⁻¹ of data of $p \overline{p}$ data at \sqrt{s} =1.96 TeV. The measured asymmetry is in agreement with the SM predictions of 8.8 \pm 0.9 % [BERNREUTHER 12], which includes the EW effects. The dependences of the asymmetry on |y(t) - y(t)| and $m_{t,t}$ are shown
- in Figs. 9 and 10, respectively. ⁶Based on 9.4 fb⁻¹ of data. Reported A_{FB} values come from the determination of a_i coefficients of $d\sigma/d(\cos\theta_t) = \Sigma_i a_i P_i(\cos(\theta_t))$ measurement. The result of $a_1/a_0 = 1$ $(40 \pm 12)\%$ seems higher than the NLO SM prediction of (15 + 7)%.
- 7 Based on 9.4 fb $^{-1}$ of data. The quoted result is the asymmetry at the parton level.
- $^8\,{\rm Based}$ on 9.4 ${\rm fb}^{-1}$ of data. The observed asymmetry is to be compared with the SM prediction of $A_{FB}^{\ell} = 0.038 \pm 0.003$.
- ⁹Based on 5.4 fb⁻¹ of data. ABAZOV 13A studied the dilepton channel of the $t \bar{t}$ events and measured the leptonic forward-backward asymmetry to be $A_{FB}^{\ell} = 5.8 \pm 5.1 \pm 1.3\%$,

which is consistent with the SM (QCD+EW) prediction of 4.7 \pm 0.1%. The result is obtained after combining the measurement (15.2 \pm 4.0%) in the ℓ + jets channel ABAZOV 11AH. The top quark helicity is measured by using the neutrino weighting method to be consistent with zero in both dilepton and ℓ + jets channels.

- ¹¹ Based on 5.4 fb⁻¹ of data. The error is statistical and systematic combined. The quoted asymmetry is obtained after unfolding to be compared with the MC@NLO prediction of (5.0 ± 0.1) %. No significant difference between the $m_{t \,\overline{t}} < 450$ and > 450 GeV data samples is found. A corrected asymmetry based on the lepton from a top quark decay of (15.2 ± 4.0) % is measured to be compared to the MC@NLO prediction of (2.1 ± 0.1) %.
- ¹² Result is based on 1.9 fb⁻¹ of data. The *FB* asymmetry in the $t\bar{t}$ events has been measured in the ℓ + jets mode, where the lepton charge is used as the flavor tag. The asymmetry in the $p\bar{p}$ frame is defined in terms of $\cos(\theta)$ of hadronically decaying *t*-quark momentum, whereas that in the $t\bar{t}$ frame is defined in terms of the *t* and \bar{t} rapidity difference. The results are consistent ($\leq 2\sigma$) with the SM predictions.
- ¹³ Result is based on 0.9 fb⁻¹ of data. The asymmetry in the number of $t\bar{t}$ events with $y_t > y_{\bar{t}}$ and those with $y_t < y_{\bar{t}}$ has been measured in the lepton + jets final state. The observed value is consistent with the SM prediction of 0.8% by MC@NLO, and an upper bound on the $Z' \rightarrow t\bar{t}$ contribution for the SM Z-like couplings is given in in Fig. 2 for 350 GeV $< m_{Z'} < 1$ TeV.

t-Quark Electric Charge

VALUE	DOCUMENT ID		TECN	COMMENT
$0.64 \pm 0.02 \pm 0.08$	¹ AAD	13AY	ATLS	$\ell {+} ot\!$
\bullet \bullet We do not use the following	owing data for averag	ges, fit	s, limits	, etc. ● ● ●
	² ABAZOV		D0	$\ell + \not\!$
	³ AALTONEN	13J	CDF	pp at 1.96 TeV
	⁴ AALTONEN	10S	CDF	Repl. by AALTONEN 13J
	⁵ ABAZOV	07 C	D0	fraction of $ q =4e/3$ pair

- ¹ AAD 13AY result is based on 2.05 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV, the result is obtained by reconstructing $t\bar{t}$ events in the lepton + jets final state, where *b*-jet charges are tagged by the jet-charge algorithm. This measurement excludes the charge -4/3 assignment to the top quark at more than 8 standard deviations.
- ²ABAZOV 14D result is based on 5.3 fb⁻¹ of $p\overline{p}$ data at $\sqrt{s}=1.96$ TeV. The electric charge of b + W system in $t\overline{t}$ candidate events is measured from the charges of the leptons from W decay and in b jets. Under the assumption that the b + W system consists of the sum of the top quark and the charge -4/3 quark b'(-4/3) of the same mass, the top quark fraction is found to be $f = 0.88 \pm 0.13$ (stat) ± 0.11 (syst), or the upper bound for the b'(-4/3) contamination of 1 f < 0.46 (95% CL).
- ³ AALTONEN 13J excludes the charge -4/3 assignment to the top quark at 99% CL, using 5.6 fb⁻¹ of data in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV. Result is obtained by reconstructing $t\overline{t}$ events in the lepton + jets final state, where *b*-jet charges are tagged by the jet-charge algorithm.
- ⁴ AALTONEN 10S excludes the charge -4/3 assignment for the top quark [CHANG 99] at 95%CL, using 2.7 fb⁻¹ of data in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV. Result is obtained by reconstructing $t\overline{t}$ events in the lepton + jets final state, where *b*-jet charges are tagged by the SLT (soft lepton tag) algorithm.
- ⁵ABAZOV 07C reports an upper limit $\rho < 0.80$ (90% CL) on the fraction ρ of exotic quark pairs $Q\overline{Q}$ with electric charge $|\mathbf{q}| = 4e/3$ in $t\overline{t}$ candidate events with high p_T

lepton, missing E_T and ≥ 4 jets. The result is obtained by measuring the fraction of events in which the quark pair decays into $W^- + b$ and $W^+ + \overline{b}$, where b and \overline{b} jets are discriminated by using the charge and momenta of tracks within the jet cones. The maximum CL at which the model of CHANG 99 can be excluded is 92%. Based on 370 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV.

t-Quark REFERENCES

AAD	24	PL B848 138376	G.	Aad <i>et al.</i>	(ATLAS Collab.)
AABOUD	23	PR D108 032014	М	Aaboud <i>et al.</i>	(ATLAS Collab.)
AAD	23			Aad <i>et al.</i>	
	23	PL B842 137379			(ATLAS Collab.)
Also		PL B847 138286 (errat.)			(ATLAS Collab.)
AAD		JHEP 2307 033	G.	Aad <i>et al.</i>	(ATLAS Collab.)
AAD	23AS	PR D108 032019	G.	Aad <i>et al.</i>	(ATLAS Collab.)
AAD		PL B843 137848	G.	Aad <i>et al.</i>	(ATLAS Collab.)
AAD		JHEP 2307 213		Aad <i>et al.</i>	(ATLAS and CMS Collabs.)
AAD					
		JHEP 2308 077		Aad <i>et al.</i>	(ATLAS Collab.)
AAD		EPJ C83 496		Aad <i>et al.</i>	(ATLAS Collab.)
AAD	23BN	PRL 131 181901	G.	Aad	(ATLAS Collab.)
AAD	23CJ	JHEP 2312 195	G.	Aad <i>et al.</i>	(ATLAS Collab.)
AAD	23E	JHEP 2306 191	G.	Aad <i>et al.</i>	(ATLAS Collab.)
AAD	23H	JHEP 2306 155		Aad <i>et al.</i>	(ATLAS Collab.)
AAD	23J	JHEP 2306 138		Aad <i>et al.</i>	(ATLAS Collab.)
AAD	235 23N	JHEP 2306 019		Aad et al.	(,
					(ATLAS Collab.)
AAD	23S	JHEP 2307 141		Aad <i>et al.</i>	(ATLAS Collab.)
HAYRAPETY	. 23B	PL B847 138290	Α.	Hayrapetyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	23AN	JHEP 2307 219	Α.	Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	23AQ	PL B844 138076	Α.	Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	23BB	EPJ C83 963		Tumasyan <i>et al.</i>	(CMS_Collab.)
TUMASYAN		PL B846 137703		Tumasyan <i>et al.</i>	(CMS Collab.)
	-				
TUMASYAN	23J	JHEP 2306 081		Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	23R	JHEP 2307 077		Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	23T	JHEP 2307 046	Α.	Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	23U	JHEP 2307 023	Α.	Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	23Z	EPJ C83 560	Α.	Tumasyan <i>et al.</i>	(CMS Collab.)
AAD	22Q	JHEP 2208 175	G.	Aad <i>et al.</i>	(ATLAS Collab.)
AAD	22T	EPJ C82 334		Aad <i>et al.</i>	(ATLAS Collab.)
AAD	22Z	JHEP 2211 040		Aad <i>et al.</i>	(ATLAS Collab.)
TUMASYAN	22A	PRL 129 032001		Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	22K	JHEP 2202 169	Α.	Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	22L	JHEP 2202 107	Α.	Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	22T	JHEP 2204 144	Α.	Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	22W	JHEP 2205 091	Α.	Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	22Z	JHEP 2206 082		Tumasyan <i>et al.</i>	(CMS Collab.)
AAD		EPJ C81 737		Aad <i>et al.</i>	(ATLAS Collab.)
AAD		EPJ C81 720		Aad <i>et al.</i>	(ATLAS Collab.)
AAD		JHEP 2111 118		Aad <i>et al.</i>	(ATLAS Collab.)
TUMASYAN	21E	JHEP 2111 111	Α.	Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	21G	JHEP 2112 161	Α.	Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	21H	JHEP 2112 180	Α.	Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	21J	PR D104 092013	Α.	Tumasyan <i>et al.</i>	(CMS Collab.)
AAD	20AB	JHEP 2007 124		Aad <i>et al.</i>	(ATLAS Collab.)
AAD		PL B810 135797		Aad et al.	(ATLAS Collab.)
AAD		EPJ C80 1085		Aad <i>et al.</i>	(ATLAS Collab.)
AAD	20B	PL B800 135082		Aad <i>et al.</i>	(ATLAS Collab.)
AAD	20Q	EPJ C80 528	G.	Aad <i>et al.</i>	(ATLAS Collab.)
AAD	20Y	JHEP 2008 051	G.	Aad <i>et al.</i>	(ATLAS and CMS Collabs.)
AAD	20Z	PRL 125 061802	G.	Aad <i>et al.</i>	(ATLAS Collab.)
SIRUNYAN	20AB	JHEP 2003 056	Α.	M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		JHEP 2006 146		M. Sirunyan <i>et al.</i>	(CMS_Collab.)
SIRUNYAN		PRL 124 202001		M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		PRL 125 061801	Λ.	M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		PL B808 135609		M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		PRL 125 222001		M. Sirunyan	(CMS Collab.)
SIRUNYAN		PR D102 092013	A.	M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	20BV	EPJ C80 658		M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	20C	EPJ C80 75		M. Sirunyan <i>et al.</i>	(CMS_Collab.)
SIRUNYAN	20D	PL B800 135042		M. Sirunyan <i>et al.</i>	(CMS Collab.)
				,	()

https://pdg.lbl.gov

SIRUNYAN	20R	EPJ C80 370	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	20V	JHEP 2002 191	A.M. Sirunyan et al.	(CMS Collab.)
AABOUD		EPJ C79 290	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		EPJ C79 382	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
		PR D99 052009	M. Aaboud <i>et al.</i>	
AABOUD				(ATLAS Collab.)
AABOUD		PR D99 072009	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	19R	JHEP 1905 088	M. Aaboud <i>et al.</i>	(ATLAS and CMS Collabs.)
AABOUD	19S	JHEP 1905 123	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AAD	19G	JHEP 1911 150	G. Aad <i>et al.</i>	(ATLAS Collab.)
SIRUNYAN	19AP	EPJ C79 313	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	19AR	EPJ C79 368	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	19BF	PRL 122 132003	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	19BX	PR D100 072002	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		PR D100 072007	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		JHEP 1911 082	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	19P	JHEP 1902 149	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19R	JHEP 1903 026	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
AABOUD		PL B780 557	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		JHEP 1804 033	M. Aabound <i>et al.</i>	(ATLAS and CMS Collabs.)
AABOUD		JHEP 1807 176	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18AZ	EPJ C78 129	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18BH	EPJ C78 487	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18BK	PL B784 173	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18BW	JHEP 1809 139	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	-	JHEP 1812 039	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18H	JHEP 1801 063	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
	18X	PR D98 032002	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	-			
AALTONEN	18	PRL 120 042001	T. Aaltonen <i>et al.</i>	(CDF and D0 Collabs.)
SIRUNYAN		JHEP 1803 115	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		JHEP 1806 102	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		JHEP 1806 101	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18BS	JHEP 1808 011	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	18BU	EPJ C78 140	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	18DE	EPJ C78 891	A.M. Sirunyan et al.	(CMS Collab.)
Also		EPJ C82 323 (errat.)	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	18DL	JHEP 1810 117	A.M. Sirunyan <i>et al.</i>	(CMS_Collab.)
SIRUNYAN	18L	PRL 120 231801	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18Z	PL B779 358	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
AABOUD		JHEP 1709 118	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		JHEP 1710 129	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		JHEP 1712 017	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		EPJ C77 804	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	17G	JHEP 1703 113	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	17U	JHEP 1704 086	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD			M. Aaboud <i>et al.</i>	(,
	17I 17T	JHEP 1704 124 EPJ C77 531	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	17T			(ATLAS Collab.)
AABOUD	17Z	PR D95 072003	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
ABAZOV	17	PR D95 011101	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	17B	PR D95 112004	V.M. Abazov <i>et al.</i>	(D0 Collab.)
CHATRCHYAN		PL B770 50	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
KHACHATRY		EPJ C77 15	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY	. 17G	JHEP 1702 028	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY	. 17I	JHEP 1702 079	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY	. 17N	EPJ C77 172	V. Khachatryan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	17AA	PL B772 752	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	17AB	PL B772 336	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	17E	JHEP 1707 003	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	17L	EPJ C77 354	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	17N	EPJ C77 467	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	170	PR D96 032002	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
			5	
SIRUNYAN	17S	EPJ C77 578	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	17W	JHEP 1709 051	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
AABOUD	16R	PL B761 136	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	16T	PL B761 350	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AAD		PR D94 032006	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD		JHEP 1604 023	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	16AS	EPJ C76 55	G. Aad <i>et al.</i>	(ATLAS Collab.)
Also		EPJ C82 70 (errat.)	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	16AZ	EPJ C76 87	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	16B	JHEP 1601 064	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	16BK	EPJ C76 642	G. Aad <i>et al.</i>	(ATLAS Collab.)
				. ,

AAD	16D	EPJ C76 12	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD				
	16T	PL B756 52	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	16U	PL B756 228	G. Aad <i>et al.</i>	(ATLAS Collab.)
AALTONEN	16	PR D93 032011	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	16	PL B752 18	V.M. Abazov <i>et al.</i>	`(D0 Collab.)
ABAZOV	16A	PL B757 199	V.M. Abazov <i>et al.</i>	(D0 Collab.)
-				
ABAZOV	16D	PR D94 032004	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	16F	PR D94 092004	V.M. Abazov <i>et al.</i>	(D0 Collab.)
KHACHATRY	16AD	PL B760 365	V. Khachatryan <i>et al.</i>	(CMS_Collab.)
		PR D93 034014	V. Khachatryan et al.	(CMS Collab.)
			-	
KHACHATRY			V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY	16AK	PR D93 072004	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY	16AL	PR D93 092006	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY	16AS	JHEP 1604 035	V. Khachatryan <i>et al.</i>	(CMS_Collab.)
		JHEP 1608 029	V. Khachatryan <i>et al.</i>	(CMS Collab.)
			3	
		JHEP 1609 027	V. Khachatryan <i>et al.</i>	(CMS_Collab.)
KHACHATRY	16BC	EPJ C76 128	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY	16BJ	EPJ C76 439	V. Khachatryan <i>et al.</i>	(CMS Collab.)
		JHEP 1604 073	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY			V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY	16CB	JHEP 1612 123	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY	16J	PRL 116 052002	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY		PL B757 154	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY		PL B758 321	3	
			V. Khachatryan <i>et al.</i>	(CMS Collab.)
TEVEWWG	16	arXiv:1608.01881	Tevatron Electroweak Working Gro	· · · · · · · · · · · · · · · · · · ·
AAD	15	PL B740 222	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	15A	PL B740 118	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	15A I	JHEP 1505 061	G. Aad et al.	(ATLAS Collab.)
			G. Aad et al.	
AAD		JHEP 1508 105		(ATLAS Collab.)
AAD	15AW	EPJ C75 158	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	15BF	EPJ C75 330	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	15BO	PR D91 052005	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD		PR D91 112013	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD		JHEP 1510 121	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	15BY	JHEP 1510 150	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	15CC	PR D92 072005	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD		JHEP 1512 061	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	1500 15D	JHEP 1501 020	G. Aad <i>et al.</i>	
				(ATLAS Collab.)
AAD	15J	PRL 114 142001	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAIJ	15R	PRL 115 112001	R. Aaij <i>et al.</i>	(LHCb Collab.)
AALTONEN	15D	PR D92 032003	T. Aaltonen et al.	(CDF Collab.)
AALTONEN	15H	PRL 115 152003	T. Aaltonen <i>et al.</i>	(CDF, D0 Collab.)
ABAZOV	15G	PR D91 112003	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	15K	PR D92 052007	V.M. Abazov <i>et al.</i>	(D0 Collab.)
CHATRCHYAN	15	EPJ C75 216 (errat.)	S. Chatrchyan <i>et al.</i>	(CMS_Collab.)
AAD	14	PL B728 363	G. Aad et al.	(ATLAS Collab.)
AAD	1444	JHEP 1406 008	G. Aad et al.	(ATLAS Collab.)
AAD			G. Aad <i>et al.</i>	
		EPJ C74 3109		(ATLAS Collab.)
AAD		PR D90 112016	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	14BI	PR D90 112006	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	14I	JHEP 1402 107	G. Aad <i>et al.</i>	(ATLAS Collab.)
AALTONEN	14A	PR D89 091101	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	14F	PRL 113 042001	T. Aaltonen <i>et al.</i>	(CDF Collab.)
Also		PRL 117 199901 (errat.)	I. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	14G	PRL 112 221801	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	14H	PR D89 072001	T. Aaltonen <i>et al.</i>	(CDF and D0 Collab.)
AALTONEN	14K	PRL 112 231805	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	14L	PRL 112 231804	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	14M	PRL 112 231803	T. Aaltonen <i>et al.</i>	(CDF and D0 Collab.)
AALTONEN	14N	PR D90 091101	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	140	PRL 113 261804	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	14C	PRL 113 032002	V.M. Abazov <i>et al.</i>	(D0 Collab.)
	140			
Also	1.00	PR D91 112003	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	14D	PR D90 051101	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	14G	PR D90 072001	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	14H	PR D90 072011	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	14K	PR D90 092006	V.M. Abazov <i>et al.</i>	(D0 Collab.)
CHATRCHYAN		PL B728 496	S. Chatrchyan <i>et al.</i>	(CMS_Collab.)
		PRL 112 231802	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHAIRCHYAN	14AE	EPJ C74 3014	S. Chatrchyan <i>et al.</i>	(CMS_Collab.)
Also		EPJ C75 216 (errat.)	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
, 100				

CHATRCHYAN 14C	EPJ C74 2758	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN 14D	JHEP 1404 191	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN 14F	JHEP 1402 024	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN 140	PL B731 173	S. Chatrchyan <i>et al.</i>	(CMS_Collab.)
CHATRCHYAN 14R	PR D90 032006	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN 14S	PRL 112 171802	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
KHACHATRY 14E	PL B736 33	V. Khachartryan <i>et al.</i>	(CMS Collab.)
KHACHATRY 14F	JHEP 1406 090	V. Khachartryan <i>et al.</i>	(CMS Collab.)
KHACHATRY 14H	JHEP 1409 087	V. Khachartryan <i>et al.</i>	(CMS Collab.)
		· · · · · · · · · · · · · · · · · · ·	
KHACHATRY 14K	PL B738 526 (errat.)	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
KHACHATRY 14N	EPJ C74 3060	V. Khachartryan <i>et al.</i>	(CMS Collab.)
KHACHATRY 14Q	PR D90 112013	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY 14R	JHEP 1411 154	V. Khachartryan <i>et al.</i>	(CMS Collab.)
KHACHATRY 14S	PL B739 23	V. Khachartryan <i>et al.</i>	(CMS Collab.)
		G. Aad <i>et al.</i>	
	JHEP 1311 031		(ATLAS Collab.)
	PRL 111 232002	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD 13X	EPJ C73 2328	G. Aad <i>et al.</i>	(ATLAS Collab.)
AALTONEN 13AB	PR D88 091103	T. Aaltonen <i>et al.</i>	(CDF Collab.)
	PRL 111 182002	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN 13D	PR D87 031104	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN 13E	PR D87 052013	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN 13G	PR D87 111101	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN 13H	PR D88 011101	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN 13J	PR D88 032003	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN 13S	PR D87 092002	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN 13X	PR D88 072003	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN 13Z	PRL 111 202001	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV 13A	PR D87 011103	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV 130	PL B726 656	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV 13P	PR D88 112002	V.M. Abazov <i>et al.</i>	(D0 Collab.)
CHATRCHYAN 13AY		S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN 13BB		S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN 13BE		S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN 13BH		S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN 13C	PRL 110 022003	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN 13F	PL B718 1252	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN 13S	EPJ C73 2494	S. Chatrchyan <i>et al.</i>	(CMS_Collab.)
AAD 12B	PL B707 459	G. Aad <i>et al.</i>	(ATLAS Collab.)
	JHEP 1204 069	G. Aad <i>et al.</i>	
			(ATLAS Collab.)
	JHEP 1205 059	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD 12BG	JHEP 1206 088	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD 12BK	EPJ C72 2039	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD 12BL	EPJ C72 2043	G. Aad <i>et al.</i>	(ATLAS Collab.)
	PL B711 244	G. Aad et al.	(ATLAS Collab.)
	PL B712 351	G. Aad <i>et al.</i>	(ATLAS Collab.)
			(ATLAS COND.)
	JHEP 1209 139	G. Aad <i>et al.</i>	(ATLAS Collab.)
	PL B717 89	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD 12CH	PL B717 330	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD 12I	EPJ C72 2046	G. Aad <i>et al.</i>	(ATLAS Collab.)
AALTONEN 12AI	PRL 109 152003	T. Aaltonen <i>et al.</i>	(CDF Collab.)
	PRL 109 192001	T. Aaltonen <i>et al.</i>	(CDF Collab.)
			(CDF, D0 Collab.)
	PR D86 092003	T. Aaltonen <i>et al.</i>	()
AALTONEN 12G	PL B714 24	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN 12Z	PR D85 071106	T. Aaltonen <i>et al.</i>	(CDF, D0 Collab.)
ABAZOV 12AB	PR D86 051103	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV 12B	PRL 108 032004	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV 12E	PL B708 21	V.M. Abazov <i>et al.</i>	(D0 Collab.)
		V.M. Abazov <i>et al.</i>	
ABAZOV 12I	PL B713 165		(D0 Collab.)
ABAZOV 12T	PR D85 091104	V.M. Abazov <i>et al.</i>	(D0 Collab.)
BERNREUTH 12	PR D86 034026	W. Bernreuther, ZG. Si	(AACH, SHDN)
CHATRCHYAN 12AC		S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN 12AX		S. Chatrchyan <i>et al.</i>	(CMS_Collab.)
CHATRCHYAN 12BA		S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN 12BB		· · · · · · · · · · · · · · · · · · ·	
		S. Chatrchyan <i>et al.</i>	(CMS_Collab.)
CHATRCHYAN 12BP		S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN 12BQ		S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN 12BS		S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN 12Y	JHEP 1206 109	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
AAD 11A	EPJ C71 1577	G. Aad <i>et al.</i>	(ATLAS Collab.)
	PR D84 071105	T. Aaltonen <i>et al</i>	((L)E (ollah)
	PR D84 071105 PRI 107 232002	T. Aaltonen <i>et al.</i> T. Aaltonen <i>et al.</i>	(CDF Collab.) (CDF Collab.)
	PR D84 071105 PRL 107 232002	T. Aaltonen <i>et al.</i> T. Aaltonen <i>et al.</i>	(CDF Collab.) (CDF Collab.)

Page 66

AALTONEN	11AR	PR D83 031104	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	11D	PR D83 071102	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	11E	PR D83 111101	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	11F	PR D83 112003	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	11K	PRL 106 152001	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	11T	PL B698 371	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	11W	PR D84 031101	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	11Y	PR D84 032003	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	11Z	PR D84 031104	T. Aaltonen <i>et al.</i>	
				(CDF Collab.)
ABAZOV	11A	PL B695 88	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV		PL B705 313	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	11AD	PR D84 112001	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	11AE	PRL 107 032001	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV		PL B702 16	V.M. Abazov <i>et al.</i>	(D0 Collab.)
		PR D84 112005	V.M. Abazov et al.	
ABAZOV				(D0 Collab.)
ABAZOV	11B	PRL 106 022001	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	11C	PR D83 032009	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	11E	PR D84 012008	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	11M	PL B701 313	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	11P	PR D84 032004	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	11R	PRL 107 082004	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	11S	PL B703 422	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	11T	PR D84 052005	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	11X	PRL 107 121802	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	11Z	PL B704 403	V.M. Abazov <i>et al.</i>	(D0 Collab.)
		EPJ C71 1721	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
			5	
CHATRCHYAN		JHEP 1107 049	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN	11R	PRL 107 091802	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN	11Z	PR D84 092004	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
KHACHATRY	. 11A	PL B695 424	V. Khachatryan <i>et al.</i>	(CMS_Collab.)
AALTONEN	1044	PR D82 052002	T. Aaltonen <i>et al.</i>	(CDF Collab.)
		PR D82 112005	T. Aaltonen <i>et al.</i>	
AALTONEN				(CDF Collab.)
AALTONEN		PRL 105 232003	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	10AE	PRL 105 252001	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	10C	PR D81 031102	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	10D	PR D81 032002	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	10E	PR D81 052011	T. Aaltonen <i>et al.</i>	(CDF Collab.)
	10Q		T. Aaltonen <i>et al.</i>	
AALTONEN		PRL 105 042002		(CDF Collab.)
AALTONEN	10S	PRL 105 101801	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	10U	PR D81 072003	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	10V	PR D81 092002	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	10W	PRL 105 012001	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	10	PL B682 363	V.M. Abazov <i>et al.</i>	(D0 Collab.)
		PR D82 032002		
ABAZOV	101		V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	10J	PL B690 5	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	10K	PL B693 81	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	10Q	PR D82 071102	V.M. Abazov <i>et al.</i>	(D0 Collab.)
AHRENS	10	JHEP 1009 097	V. Ahrens <i>et al.</i>	(MAIŇZ, HEIDH)
AHRENS	10A	NPBPS 205-206 48	V. Ahrens <i>et al.</i>	(MAINZ, HEIDH)
AALTONEN		PR D79 112007	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN		PR D80 051104	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	09AL	PR D80 052001	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	09AT	PRL 103 092002	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	09F	PR D79 031101	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	09H	PR D79 052007	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	09J	PR D79 072001	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	09K	PR D79 072010	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	09L	PR D79 092005	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	09M	PRL 102 042001	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	09N	PRL 102 151801	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	090	PRL 102 152001	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	09Q	PL B674 160	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	09X	PR D79 072005	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AARON	09A	PL B678 450	F.D. Aaron <i>et al.</i>	(H1 Collab.)
ABAZOV	09AA	PRL 103 132001	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	09AG	PR D80 071102	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV		PR D80 092006	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	09J	PRL 102 092002	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	09R	PL B679 177	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	09Z	PRL 103 092001	V.M. Abazov <i>et al.</i>	(D0 Collab.)
LANGENFELD	09	PR D80 054009	U. Langenfeld, S. Moch, P. Uwer	

AALTONEN	08AB	PRL 101 202001	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN		PRL 101 192002	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN		PR D78 111101	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	08AH	PRL 101 252001	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	08C	PRL 100 062005	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	08AH	PRL 101 182001	V.M. Abazov <i>et al.</i>	`(D0 Collab.)
ABAZOV	08AI	PRL 101 221801	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	08B	PRL 100 062004	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	08I	PR D78 012005	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	08L	PRL 100 142002	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	08M	PRL 100 192003	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	08N	PRL 100 192004	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABULENCIA	08	PR D78 012003	A. Abulencia <i>et al.</i>	(CDF Collab.)
CACCIARI	08	JHEP 0809 127	M. Cacciari <i>et al.</i>	
KIDONAKIS	08	PR D78 074005	N. Kidonakis, R. Vogt	
MOCH	08	PR D78 034003	S. Moch, P. Uwer	(BERL, KARLE)
AALTONEN	07	PRL 98 142001	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	07B	PR D75 111103	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	07D	PR D76 072009	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	071	PRL 99 182002	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	07C	PRL 98 041801	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	07D	PR D75 031102	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	07F	PR D75 092001	V.M. Abazov <i>et al.</i>	(D0 Collab.)
	07H		V.M. Abazov <i>et al.</i>	
ABAZOV		PRL 98 181802		(D0 Collab.)
ABAZOV	070	PR D76 052006	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	07P	PR D76 072007	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	07R	PR D76 092007	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	07V	PRL 99 191802	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	07W	PL B655 7	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABULENCIA	07D	PR D75 031105	A. Abulencia <i>et al.</i>	(CDF Collab.)
ABULENCIA	07G	PRL 98 072001	A. Abulencia <i>et al.</i>	(CDF Collab.)
ABULENCIA	071	PR D75 052001	A. Abulencia <i>et al.</i>	(CDF Collab.)
ABULENCIA	07J	PR D75 071102	A. Abulencia <i>et al.</i>	(CDF Collab.)
ABAZOV	06K	PL B639 616	V.M. Abazov <i>et al.</i>	`(D0 Collab.)
ABAZOV	06U	PR D74 092005	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	06X	PR D74 112004	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABULENCIA	06D	PRL 96 022004	A. Abulencia <i>et al.</i>	(CDF Collab.)
Also		PR D73 032003	A. Abulencia <i>et al.</i>	(CDF Collab.)
Also		PR D73 092002	A. Abulencia <i>et al.</i>	(CDF Collab.)
ABULENCIA	06G	PRL 96 152002	A. Abulencia <i>et al.</i>	(CDF Collab.)
Also		PR D74 032009	A. Abulencia <i>et al.</i>	(CDF Collab.)
ABULENCIA	06R	PL B639 172	A. Abulencia <i>et al.</i>	(CDF Collab.)
ABULENCIA	06U	PR D73 111103	A. Abulencia <i>et al.</i>	(CDF Collab.)
ABULENCIA	06V	PR D73 112006	A. Abulencia <i>et al.</i>	(CDF Collab.)
ABULENCIA	06Z	PRL 97 082004	A. Abulencia <i>et al.</i>	(CDF Collab.)
ABULENCIA,A	06C	PRL 96 202002	A. Abulencia <i>et al.</i>	(CDF Collab.)
ABULENCIA, A		PR D74 072005	A. Abulencia <i>et al.</i>	(CDF Collab.)
ABULENCIA,A	06F	PR D74 072006	A. Abulencia <i>et al.</i>	(CDF Collab.)
ABAZOV	05	PL B606 25	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	05G	PL B617 1	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	05L	PR D72 011104	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	05P	PL B622 265	V.M. Abazov <i>et al.</i>	(D0 Collab.)
Also		PL B517 282	V.M. Abazov <i>et al.</i>	(D0 Collab.)
Also		PR D63 031101	B. Abbott <i>et al.</i>	(D0 Collab.)
			V.M. Abazov <i>et al.</i>	(D0 Collab.)
Also	050	PR D75 092007		
ABAZOV	05Q	PL B626 35	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	05R	PL B626 55	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	05X	PL B626 45	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ACOSTA	05A	PRL 95 102002	D. Acosta <i>et al.</i>	(CDF Collab.)
ACOSTA	05D	PR D71 031101	D. Acosta <i>et al.</i>	(CDF Collab.)
ACOSTA	05N	PR D71 012005	D. Acosta <i>et al.</i>	(CDF Collab.)
ACOSTA	05S	PR D72 032002	D. Acosta <i>et al.</i>	(CDF Collab.)
ACOSTA	05T	PR D72 052003	D. Acosta <i>et al.</i>	(CDF Collab.)
ACOSTA	05U	PR D71 072005	D. Acosta <i>et al.</i>	(CDF Collab.)
ACOSTA	05V	PR D71 052003	D. Acosta <i>et al.</i>	(CDF Collab.)
ABAZOV	04G	NAT 429 638	V.M. Abazov et al.	(D0 Collab.)
ABDALLAH	04C	PL B590 21	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
ACOSTA	04H	PR D69 052003	D. Acosta <i>et al.</i>	(CDF Collab.)
ACOSTA	041	PRL 93 142001	D. Acosta <i>et al.</i>	(CDF Collab.)
AKTAS	04	EPJ C33 9	A. Aktas <i>et al.</i>	(H1 Collab.)
ABAZOV	03A	PR D67 012004	V.M. Abazov <i>et al.</i>	(D0 Collab.)
				. /

Page 68

Citation: S. Navas et al. (Particle Data Group), Phys. Rev. D ${\bf 110},\,030001$ (2024)

CHEKANOV ACHARD ACOSTA HEISTER ABBIENDI AFFOLDER AFFOLDER AFFOLDER BARATE ABBOTT ABE Also CHANG ABBOTT ABE ABE BHAT ABE BHAT ABE ABE BHAT ABE ABE PDG ABACHI	03 02J 02Q 01T 01A 01C 00B 00S 99G 99B 98D 98F 98E 98F 98F 98F 98F 98F 98F 98F 98F 98F 98F	PL B559 153 PL B549 290 PR D65 091102 PL B543 173 PL B521 181 PR D63 032003 PR D64 032002 PRL 86 3233 PRL 84 216 PL B494 33 PR D60 052001 PRL 82 271 PRL 82 2808 (errat.) PR D59 091503 PRL 80 2063 PR D58 052001 PRL 80 2767 PRL 80 2779 PRL 80 2779 PRL 80 2779 PRL 80 2525 IJMP A13 5113 PRL 79 1992 PRL 79 1992 PRL 79 3585 PR D54 1 PRL 74 2632	 S. Chekanov et al. P. Achard et al. D. Acosta et al. D. Acosta et al. A. Heister et al. G. Abbiendi et al. T. Affolder et al. T. Affolder et al. T. Affolder et al. T. Affolder et al. S. Barate et al. B. Abbott et al. F. Abe et al. B. Abbott et al. B. Abbott et al. B. Abbott et al. B. Abbott et al. F. Abe et al. B. Abbott et al. F. Abe et al. R. Abe et al. F. Abe et al.	(ZEUS Collab.) (L3 Collab.) (CDF Collab.) (ALEPH Collab.) (OPAL Collab.) (CDF Collab.)
PDG	96	PR D54 1	R. M. Barnett <i>et al.</i>	(PDG Collab.)
ABE ABE Also	95F 94E	PRL 74 2626 PR D50 2966 PRL 73 225	F. Abe <i>et al.</i> F. Abe <i>et al.</i> F. Abe <i>et al.</i>	(CDF Collab.) (CDF Collab.) (CDF Collab.)
/ 130		TILE 10 220		